Suppr超能文献

GenoGAM:用于ChIP-Seq分析的全基因组广义相加模型

GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis.

作者信息

Stricker Georg, Engelhardt Alexander, Schulz Daniel, Schmid Matthias, Tresch Achim, Gagneur Julien

机构信息

Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 80333 Munich, Germany.

Department of Informatics, Technische Universität München, 85748 Garching, Germany.

出版信息

Bioinformatics. 2017 Aug 1;33(15):2258-2265. doi: 10.1093/bioinformatics/btx150.

Abstract

MOTIVATION

Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used approach to study protein-DNA interactions. Often, the quantities of interest are the differential occupancies relative to controls, between genetic backgrounds, treatments, or combinations thereof. Current methods for differential occupancy of ChIP-Seq data rely however on binning or sliding window techniques, for which the choice of the window and bin sizes are subjective.

RESULTS

Here, we present GenoGAM (Genome-wide Generalized Additive Model), which brings the well-established and flexible generalized additive models framework to genomic applications using a data parallelism strategy. We model ChIP-Seq read count frequencies as products of smooth functions along chromosomes. Smoothing parameters are objectively estimated from the data by cross-validation, eliminating ad hoc binning and windowing needed by current approaches. GenoGAM provides base-level and region-level significance testing for full factorial designs. Application to a ChIP-Seq dataset in yeast showed increased sensitivity over existing differential occupancy methods while controlling for type I error rate. By analyzing a set of DNA methylation data and illustrating an extension to a peak caller, we further demonstrate the potential of GenoGAM as a generic statistical modeling tool for genome-wide assays.

AVAILABILITY AND IMPLEMENTATION

Software is available from Bioconductor: https://www.bioconductor.org/packages/release/bioc/html/GenoGAM.html .

CONTACT

gagneur@in.tum.de.

SUPPLEMENTARY INFORMATION

Supplementary information is available at Bioinformatics online.

摘要

动机

染色质免疫沉淀测序(ChIP-Seq)是一种广泛用于研究蛋白质与DNA相互作用的方法。通常,感兴趣的量是相对于对照、不同遗传背景、处理或它们的组合之间的差异占有率。然而,目前用于ChIP-Seq数据差异占有率的方法依赖于分箱或滑动窗口技术,而窗口和箱大小的选择是主观的。

结果

在这里,我们提出了GenoGAM(全基因组广义相加模型),它使用数据并行策略将成熟且灵活的广义相加模型框架引入基因组应用。我们将ChIP-Seq读取计数频率建模为沿染色体的平滑函数的乘积。平滑参数通过交叉验证从数据中客观估计,消除了当前方法所需的临时分箱和加窗操作。GenoGAM为全因子设计提供碱基水平和区域水平的显著性检验。在酵母的ChIP-Seq数据集中的应用表明,在控制I型错误率的同时,其灵敏度高于现有的差异占有率方法。通过分析一组DNA甲基化数据并说明对峰识别器的扩展,我们进一步证明了GenoGAM作为全基因组分析通用统计建模工具的潜力。

可用性和实现

软件可从Bioconductor获取:https://www.bioconductor.org/packages/release/bioc/html/GenoGAM.html

联系方式

gagneur@in.tum.de

补充信息

补充信息可在《生物信息学》在线获取。

相似文献

1
GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis.
Bioinformatics. 2017 Aug 1;33(15):2258-2265. doi: 10.1093/bioinformatics/btx150.
4
Global analysis of transcription factor-binding sites in yeast using ChIP-Seq.
Methods Mol Biol. 2014;1205:231-55. doi: 10.1007/978-1-4939-1363-3_15.
6
A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.
Bioinformatics. 2015 Jun 15;31(12):1889-96. doi: 10.1093/bioinformatics/btv094. Epub 2015 Feb 13.
7
Sensitive and robust assessment of ChIP-seq read distribution using a strand-shift profile.
Bioinformatics. 2018 Jul 15;34(14):2356-2363. doi: 10.1093/bioinformatics/bty137.
8
Software for rapid time dependent ChIP-sequencing analysis (TDCA).
BMC Bioinformatics. 2017 Nov 25;18(1):521. doi: 10.1186/s12859-017-1936-x.
9
HiChIP: a high-throughput pipeline for integrative analysis of ChIP-Seq data.
BMC Bioinformatics. 2014 Aug 15;15(1):280. doi: 10.1186/1471-2105-15-280.
10
esATAC: an easy-to-use systematic pipeline for ATAC-seq data analysis.
Bioinformatics. 2018 Aug 1;34(15):2664-2665. doi: 10.1093/bioinformatics/bty141.

引用本文的文献

1
Negative binomial additive model for RNA-Seq data analysis.
BMC Bioinformatics. 2020 May 1;21(1):171. doi: 10.1186/s12859-020-3506-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验