Suppr超能文献

含缺失值的纵向数据广义部分线性模型的双稳健估计

Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.

作者信息

Lin Huiming, Fu Bo, Qin Guoyou, Zhu Zhongyi

机构信息

Department of Biostatistics, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai 200032, China.

Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China.

出版信息

Biometrics. 2017 Dec;73(4):1132-1139. doi: 10.1111/biom.12703. Epub 2017 Apr 3.

Abstract

We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study.

摘要

我们针对存在缺失值的纵向数据,开发了一种广义部分线性模型的双重稳健估计方法。我们的方法将Qu等人(2010年)提出的高效总体无偏估计函数方法扩展为一种双重稳健方法,即在随机缺失(MAR)条件下,当线性条件均值条件得到满足或缺失过程的模型被正确设定时,我们的估计量是一致的。我们从边际均值的广义线性模型开始,然后推进到广义部分线性模型,通过使用回归样条平滑近似来考虑非参数协变量效应。我们为所提出的方法建立了渐近理论,并通过模拟研究将其有限样本性能与Qu的方法、完全病例广义估计方程(GEE)以及逆概率加权GEE的性能进行比较。最后,使用一项纵向队列研究的数据对所提出的方法进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验