Suppr超能文献

用于具有缺失响应和缺失协变量的二元纵向数据分析的双重稳健估计。

Doubly robust estimates for binary longitudinal data analysis with missing response and missing covariates.

作者信息

Chen Baojiang, Zhou Xiao-Hua

机构信息

Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.

出版信息

Biometrics. 2011 Sep;67(3):830-42. doi: 10.1111/j.1541-0420.2010.01541.x. Epub 2011 Jan 31.

Abstract

Longitudinal studies often feature incomplete response and covariate data. Likelihood-based methods such as the expectation-maximization algorithm give consistent estimators for model parameters when data are missing at random (MAR) provided that the response model and the missing covariate model are correctly specified; however, we do not need to specify the missing data mechanism. An alternative method is the weighted estimating equation, which gives consistent estimators if the missing data and response models are correctly specified; however, we do not need to specify the distribution of the covariates that have missing values. In this article, we develop a doubly robust estimation method for longitudinal data with missing response and missing covariate when data are MAR. This method is appealing in that it can provide consistent estimators if either the missing data model or the missing covariate model is correctly specified. Simulation studies demonstrate that this method performs well in a variety of situations.

摘要

纵向研究常常存在不完全的应答和协变量数据。当数据为随机缺失(MAR)时,基于似然的方法(如期望最大化算法)在应答模型和缺失协变量模型被正确设定的情况下能给出模型参数的一致估计量;然而,我们无需指定缺失数据机制。另一种方法是加权估计方程,当缺失数据和应答模型被正确设定时它能给出一致估计量;但是,我们无需指定存在缺失值的协变量的分布。在本文中,我们针对数据为MAR时存在缺失应答和缺失协变量的纵向数据开发了一种双重稳健估计方法。该方法的吸引力在于,如果缺失数据模型或缺失协变量模型被正确设定,它就能提供一致估计量。模拟研究表明该方法在各种情形下都表现良好。

相似文献

1
Doubly robust estimates for binary longitudinal data analysis with missing response and missing covariates.
Biometrics. 2011 Sep;67(3):830-42. doi: 10.1111/j.1541-0420.2010.01541.x. Epub 2011 Jan 31.
2
Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.
Biometrics. 2017 Dec;73(4):1132-1139. doi: 10.1111/biom.12703. Epub 2017 Apr 3.
3
GEE with Gaussian estimation of the correlations when data are incomplete.
Biometrics. 2000 Jun;56(2):528-36. doi: 10.1111/j.0006-341x.2000.00528.x.
4
Likelihood methods for incomplete longitudinal binary responses with incomplete categorical covariates.
Biometrics. 1999 Mar;55(1):214-23. doi: 10.1111/j.0006-341x.1999.00214.x.
5
Improved doubly robust estimation when data are monotonely coarsened, with application to longitudinal studies with dropout.
Biometrics. 2011 Jun;67(2):536-45. doi: 10.1111/j.1541-0420.2010.01476.x. Epub 2010 Aug 19.
6
Maximum likelihood methods for nonignorable missing responses and covariates in random effects models.
Biometrics. 2003 Dec;59(4):1140-50. doi: 10.1111/j.0006-341x.2003.00131.x.
10
Doubly robust estimation in missing data and causal inference models.
Biometrics. 2005 Dec;61(4):962-73. doi: 10.1111/j.1541-0420.2005.00377.x.

引用本文的文献

1
Bayesian semi-parametric G-computation for causal inference in a cohort study with MNAR dropout and death.
J R Stat Soc Ser C Appl Stat. 2021 Mar;70(2):398-414. doi: 10.1111/rssc.12464. Epub 2021 Jan 6.
2
A multiple robust propensity score method for longitudinal analysis with intermittent missing data.
Biometrics. 2021 Jun;77(2):519-532. doi: 10.1111/biom.13330. Epub 2020 Jul 25.
3
An R package for model fitting, model selection and the simulation for longitudinal data with dropout missingness.
Commun Stat Simul Comput. 2019;48(9):2812-2829. doi: 10.1080/03610918.2018.1468457. Epub 2018 Oct 16.
4
Estimation of response from longitudinal binary data with nonignorable missing values in migraine trials.
Contemp Clin Trials Commun. 2016 Jul 16;4:90-98. doi: 10.1016/j.conctc.2016.06.011. eCollection 2016 Dec 15.
5
Test the reliability of doubly robust estimation with missing response data.
Biometrics. 2014 Jun;70(2):289-98. doi: 10.1111/biom.12150. Epub 2014 Feb 24.
6
Marginal methods for clustered longitudinal binary data with incomplete covariates.
J Stat Plan Inference. 2012 Oct;142(10):2819-2831. doi: 10.1016/j.jspi.2012.04.006.
8
A latent-variable marginal method for multi-level incomplete binary data.
Stat Med. 2012 Nov 20;31(26):3211-22. doi: 10.1002/sim.5394. Epub 2012 Jun 26.

本文引用的文献

2
Theory and Inference for Regression Models with Missing Responses and Covariates.
J Multivar Anal. 2008 Jul;99(6):1302-1331. doi: 10.1016/j.jmva.2007.08.009.
3
Doubly robust generalized estimating equations for longitudinal data.
Stat Med. 2009 Mar 15;28(6):937-55. doi: 10.1002/sim.3520.
4
Semiparametric Estimation of Treatment Effect in a Pretest-Posttest Study with Missing Data.
Stat Sci. 2005 Aug;20(3):261-301. doi: 10.1214/088342305000000151.
6
Multiple imputation of discrete and continuous data by fully conditional specification.
Stat Methods Med Res. 2007 Jun;16(3):219-42. doi: 10.1177/0962280206074463.
8
Doubly robust estimation in missing data and causal inference models.
Biometrics. 2005 Dec;61(4):962-73. doi: 10.1111/j.1541-0420.2005.00377.x.
9
Medical cost analysis: application to colorectal cancer data from the SEER Medicare database.
Contemp Clin Trials. 2005 Oct;26(5):586-97. doi: 10.1016/j.cct.2005.05.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验