Brown Nathan P, Bertocci Gina E, Marcellin-Little Denis J
Department of Bioengineering, J. B. Speed School of Engineering, University of Louisville, Louisville, Kentucky.
Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.
Vet Surg. 2017 Jul;46(5):653-662. doi: 10.1111/vsu.12652. Epub 2017 Apr 1.
To evaluate lateral fabellotibial suture (LFTS) and TightRope CCL (TR) extra-articular stabilization biomechanics in the cranial cruciate ligament (CrCL)-deficient canine stifle joint during the stance phase of gait.
Computer simulations.
Healthy 33-kg Golden Retriever.
LFTS and TR were implemented in a previously developed 3-D quasi-static rigid body CrCL-deficient canine pelvic limb computer model simulating the stance phase of gait. Ligament loads, relative tibial translation, and relative tibial rotation were determined and compared across the CrCL-intact, CrCL-deficient, and extra-articular stabilized stifle joints.
Compared to the CrCL-intact stifle, peak caudal cruciate and lateral collateral ligament (LCL) loads were increased in the LFTS-managed stifle, peak caudal cruciate and LCL loads were decreased in the TR-managed stifle, and peak medial collateral and patellar ligament (PL) loads were similar for both techniques. Compared to the CrCL-deficient stifle, peak caudal cruciate, lateral collateral, and medial collateral ligament loads decreased, and peak PL load was similar in the LFTS- and TR-managed stifle joints. Peak relative tibial translation decreased, and peak relative tibial rotation changed from internal rotation to external rotation in the LFTS- and TR-managed stifle joints compared to the CrCL-deficient stifle.
Our computer model predicted controlled tibial translation, decreased cruciate and collateral ligament loads, and a change in femorotibial rotation from internal to external with LFTS and TR stifle management as compared to the CrCL-deficient stifle. This study demonstrates how computer modeling can be used to evaluate biomechanics of stifle stabilization surgical techniques.
评估在颅交叉韧带(CrCL)缺失的犬类 stifle 关节步态站立期,外侧腓骨胫侧缝合术(LFTS)和 TightRope CCL(TR)关节外稳定术的生物力学特性。
计算机模拟。
体重 33 千克的健康金毛猎犬。
在先前开发的三维准静态刚体 CrCL 缺失犬类骨盆肢体计算机模型中实施 LFTS 和 TR,模拟步态站立期。确定并比较完整 CrCL、CrCL 缺失以及关节外稳定 stifle 关节的韧带负荷、胫骨相对平移和胫骨相对旋转情况。
与完整 CrCL 的 stifle 相比,LFTS 处理的 stifle 中尾交叉韧带和外侧副韧带(LCL)的峰值负荷增加,TR 处理的 stifle 中尾交叉韧带和 LCL 的峰值负荷降低,两种技术的内侧副韧带和髌韧带(PL)峰值负荷相似。与 CrCL 缺失的 stifle 相比,LFTS 和 TR 处理的 stifle 关节中尾交叉韧带、外侧副韧带和内侧副韧带的峰值负荷降低,PL 峰值负荷相似。与 CrCL 缺失的 stifle 相比,LFTS 和 TR 处理的 stifle 关节中胫骨相对平移峰值降低,胫骨相对旋转峰值从内旋变为外旋。
我们的计算机模型预测,与 CrCL 缺失的 stifle 相比,采用 LFTS 和 TR stifle 处理可控制胫骨平移,降低交叉韧带和侧副韧带负荷,并使股胫旋转从内旋变为外旋。本研究展示了计算机建模如何用于评估 stifle 稳定手术技术的生物力学特性。