Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an, Shaanxi 710069, China.
State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center , Guangzhou 510060, China.
ACS Nano. 2017 Apr 25;11(4):3614-3631. doi: 10.1021/acsnano.6b07684. Epub 2017 Apr 6.
Large-scale synthesis of monodisperse ultrasmall metal ferrite nanoparticles as well as understanding the correlations between chemical composition and MR signal enhancement is critical for developing next-generation, ultrasensitive T magnetic resonance imaging (MRI) nanoprobes. Herein, taking ultrasmall MnFeO nanoparticles (UMFNPs) as a model system, we report a general dynamic simultaneous thermal decomposition (DSTD) strategy for controllable synthesis of monodisperse ultrasmall metal ferrite nanoparticles with sizes smaller than 4 nm. The comparison study revealed that the DSTD using the iron-eruciate paired with a metal-oleate precursor enabled a nucleation-doping process, which is crucial for particle size and distribution control of ultrasmall metal ferrite nanoparticles. The principle of DSTD synthesis has been further confirmed by synthesizing NiFeO and CoFeO nanoparticles with well-controlled sizes of ∼3 nm. More significantly, the success in DSTD synthesis allows us to tune both MR and biochemical properties of magnetic iron oxide nanoprobes by adjusting their chemical composition. Beneficial from the Mn dopant, the synthesized UMFNPs exhibited the highest r relaxivity (up to 8.43 mM s) among the ferrite nanoparticles with similar sizes reported so far and demonstrated a multifunctional T MR nanoprobe for in vivo high-resolution blood pool and liver-specific MRI simultaneously. Our study provides a general strategy to synthesize ultrasmall multicomponent magnetic nanoparticles, which offers possibilities for the chemical design of a highly sensitive ultrasmall magnetic nanoparticle based T MRI probe for various clinical diagnosis applications.
大规模合成单分散超小金属铁氧体纳米粒子,并了解化学成分与磁共振信号增强之间的相关性,对于开发下一代超高灵敏度 T 磁共振成像(MRI)纳米探针至关重要。在此,我们以超小 MnFeO 纳米粒子(UMFNPs)为模型系统,报道了一种通用的动态同时热分解(DSTD)策略,用于可控合成尺寸小于 4nm 的单分散超小金属铁氧体纳米粒子。比较研究表明,使用铁-草酸盐与金属-油酸盐前体制备的 DSTD 能够实现成核掺杂过程,这对于超小金属铁氧体纳米粒子的粒径和分布控制至关重要。DSTD 合成的原理通过合成具有约 3nm 良好控制尺寸的 NiFeO 和 CoFeO 纳米粒子得到了进一步证实。更重要的是,DSTD 合成的成功使我们能够通过调整其化学成分来调节磁性氧化铁纳米探针的磁共振和生化性能。得益于 Mn 掺杂剂,所合成的 UMFNPs 在迄今报道的具有类似尺寸的铁氧体纳米粒子中表现出最高的 r2 弛豫率(高达 8.43mM s),并展示了一种多功能 T MR 纳米探针,可用于体内高分辨率血池和肝脏特异性 MRI 同时成像。我们的研究提供了一种合成超小多组分磁性纳米粒子的通用策略,为基于 T MRI 探针的化学设计提供了可能性,这种探针具有超高灵敏度和超小的磁性纳米粒子,可用于各种临床诊断应用。
J Colloid Interface Sci. 2022-11-15
Colloids Surf B Biointerfaces. 2015-4-29
Nanomaterials (Basel). 2024-6-12
Mater Today Bio. 2023-8-14
ACS Appl Bio Mater. 2023-6-19