Suppr超能文献

粘结到球形基底上的薄圆形片材的起皱

Wrinkling of a thin circular sheet bonded to a spherical substrate.

作者信息

Bella Peter, Kohn Robert V

机构信息

Institute of Mathematics, Leipzig University, Augustusplatz 10, 04109 Leipzig, Germany

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0157.

Abstract

We consider a disc-shaped thin elastic sheet bonded to a compliant sphere. (Our sheet can slip along the sphere; the bonding controls only its normal displacement.) If the bonding is stiff (but not too stiff), the geometry of the sphere makes the sheet wrinkle to avoid azimuthal compression. The total energy of this system is the elastic energy of the sheet plus a (Winkler-type) substrate energy. Treating the thickness of the sheet as a small parameter, we determine the leading-order behaviour of the energy as tends to zero, and we give (almost matching) upper and lower bounds for the next-order correction. Our analysis of the leading-order behaviour determines the macroscopic deformation of the sheet; in particular, it determines the extent of the wrinkled region, and predicts the (non-trivial) radial strain of the sheet. The leading-order behaviour also provides insight about the length scale of the wrinkling, showing that it must be approximately independent of the distance from the centre of the sheet (so that the number of wrinkles must increase with ). Our results on the next-order correction provide insight about how the wrinkling pattern should vary with Roughly speaking, they suggest that the length scale of wrinkling should be exactly constant-rather, it should vary slightly, so that the number of wrinkles at radius can be approximately piecewise constant in its dependence on , taking values that are integer multiples of with [Formula: see text]This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications'.

摘要

我们考虑一个与柔性球体相连的圆盘形薄弹性片。(我们的薄片可以沿着球体滑动;连接仅控制其法向位移。)如果连接是刚性的(但不太硬),球体的几何形状会使薄片起皱以避免方位向压缩。该系统的总能量是薄片的弹性能量加上一个(温克勒型)基底能量。将薄片的厚度视为一个小参数,我们确定当趋于零时能量的主导阶行为,并给出下一阶修正的(几乎匹配的)上下界。我们对主导阶行为的分析确定了薄片的宏观变形;特别是,它确定了起皱区域的范围,并预测了薄片的(非平凡的)径向应变。主导阶行为还提供了关于起皱长度尺度的见解,表明它必须大致与距薄片中心的距离无关(这样皱纹的数量必须随增加)。我们关于下一阶修正的结果提供了关于起皱模式应如何随变化的见解。大致来说,它们表明起皱的长度尺度不应完全恒定——相反,它应该略有变化,使得半径处的皱纹数量在其对的依赖关系中可以大致分段恒定,取值为的整数倍,其中[公式:见正文]本文是主题为“通过复杂介质中的不稳定性进行图案化:理论与应用”的特刊的一部分。

相似文献

1
Wrinkling of a thin circular sheet bonded to a spherical substrate.粘结到球形基底上的薄圆形片材的起皱
Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0157.
2
Dynamics of wrinkling in ultrathin elastic sheets.超薄弹性薄板的皱缩动力学。
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):20875-20880. doi: 10.1073/pnas.1905755116. Epub 2019 Sep 30.
3
Geometry and physics of wrinkling.皱纹的几何学与物理学
Phys Rev Lett. 2003 Feb 21;90(7):074302. doi: 10.1103/PhysRevLett.90.074302. Epub 2003 Feb 19.
5
Wrinkling instabilities in soft bilayered systems.柔软双层系统中的皱纹不稳定性。
Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0163.
7
Pattern transitions in a compressible floating elastic sheet.可压缩浮动弹性薄板中的模式转变
Phys Chem Chem Phys. 2017 Sep 13;19(35):23817-23824. doi: 10.1039/c7cp03239k.
8
The smectic order of wrinkles.波纹状排列。
Nat Commun. 2017 Jul 18;8:15809. doi: 10.1038/ncomms15809.
9
Cracks in Tension-Field Elastic Sheets.张紧场弹性板的裂缝
Phys Rev Lett. 2018 Oct 5;121(14):144301. doi: 10.1103/PhysRevLett.121.144301.
10
Regimes of wrinkling in an indented floating elastic sheet.内凹漂浮弹性薄板的褶皱模式。
Phys Rev E. 2018 Jul;98(1-1):013003. doi: 10.1103/PhysRevE.98.013003.

引用本文的文献

1
Revisiting the wrinkling of elastic bilayers I: linear analysis.弹性双层膜的皱纹再现 I:线性分析。
Philos Trans A Math Phys Eng Sci. 2019 May 6;377(2144):20180076. doi: 10.1098/rsta.2018.0076.
2
Geometrically incompatible confinement of solids.固体的几何不相容约束。
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1483-1488. doi: 10.1073/pnas.1815507116. Epub 2018 Dec 27.

本文引用的文献

1
Regimes of wrinkling in pressurized elastic shells.受压弹性壳中的褶皱形态
Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0330.
3
Sheet on a deformable sphere: wrinkle patterns suppress curvature-induced delamination.可变形球体上的薄片:皱纹图案抑制曲率诱导的分层。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012407. doi: 10.1103/PhysRevE.91.012407. Epub 2015 Jan 20.
4
Indentation of ultrathin elastic films and the emergence of asymptotic isometry.超薄弹性薄膜的压痕与渐近等距性的出现。
Phys Rev Lett. 2015 Jan 9;114(1):014301. doi: 10.1103/PhysRevLett.114.014301. Epub 2015 Jan 6.
7
Stamping and wrinkling of elastic plates.弹性板的冲压和起皱。
Phys Rev Lett. 2012 Aug 3;109(5):054302. doi: 10.1103/PhysRevLett.109.054302. Epub 2012 Aug 1.
8
Prototypical model for tensional wrinkling in thin sheets.薄板拉伸起皱的原型模型。
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18227-32. doi: 10.1073/pnas.1108553108. Epub 2011 Oct 31.
10
Period fissioning and other instabilities of stressed elastic membranes.受压弹性膜的周期性裂变及其他不稳定性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):025202. doi: 10.1103/PhysRevE.80.025202. Epub 2009 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验