Suppr超能文献

关于弹性环在外围约束作用下的屈曲问题。

On the buckling of elastic rings by external confinement.

作者信息

Hazel Andrew L, Mullin Tom

机构信息

School of Mathematics, and Manchester Centre for Nonlinear Dynamics, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Mathematical Institute, University of Oxford, Radcliffe Observatory, Woodstock Road, Oxford OX2 6GG, UK

出版信息

Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0227.

Abstract

We report the results of an experimental and numerical investigation into the buckling of thin elastic rings confined within containers of circular or regular polygonal cross section. The rings float on the surface of water held in the container and controlled removal of the fluid increases the confinement of the ring. The increased compressive forces can cause the ring to buckle into a variety of shapes. For the circular container, finite perturbations are required to induce buckling, whereas in polygonal containers the buckling occurs through a linear instability that is closely related to the canonical Euler column buckling. A model based on Kirchhoff-Love beam theory is developed and solved numerically, showing good agreement with the experiments and revealing that in polygons increasing the number of sides means that buckling occurs at reduced levels of confinement.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

摘要

我们报告了一项关于限制在圆形或正多边形横截面容器内的薄弹性环屈曲的实验和数值研究结果。这些环漂浮在容器中所盛水的表面,通过控制排出液体可增加环的约束。增加的压缩力会使环屈曲成各种形状。对于圆形容器,需要有限扰动来引发屈曲,而在多边形容器中,屈曲通过与经典欧拉柱屈曲密切相关的线性不稳定性发生。基于基尔霍夫-洛夫梁理论开发了一个模型并进行了数值求解,结果与实验显示出良好的一致性,且揭示出在多边形中增加边的数量意味着在约束水平降低时就会发生屈曲。本文是主题为“复杂介质中通过不稳定性进行图案化:理论与应用”这一特刊的一部分。

相似文献

1
On the buckling of elastic rings by external confinement.
Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0227.
2
Dynamic buckling of an inextensible elastic ring: Linear and nonlinear analyses.
Phys Rev E. 2020 May;101(5-1):053002. doi: 10.1103/PhysRevE.101.053002.
3
Nonlinear buckling behaviour of spherical shells: barriers and symmetry-breaking dimples.
Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0154.
4
On the buckling of an elastic holey column.
Proc Math Phys Eng Sci. 2017 Nov;473(2207):20170477. doi: 10.1098/rspa.2017.0477. Epub 2017 Nov 15.
5
Effects of Stiff Film Pattern Geometry on Surface Buckling Instabilities of Elastic Bilayers.
ACS Appl Mater Interfaces. 2018 Jul 11;10(27):23406-23413. doi: 10.1021/acsami.8b04916. Epub 2018 Jun 29.
6
Buckling of a stiff thin film on an elastic graded compliant substrate.
Proc Math Phys Eng Sci. 2017 Dec;473(2208):20170410. doi: 10.1098/rspa.2017.0410. Epub 2017 Dec 13.
7
Compression and Stretching of Confined Linear and Ring Polymers by Applying Force.
Polymers (Basel). 2021 Nov 30;13(23):4193. doi: 10.3390/polym13234193.
8
Investigations on the buckling and dynamics of diving-inspired systems when entering water.
Bioinspir Biomim. 2020 Mar 31;15(3):036015. doi: 10.1088/1748-3190/ab76d8.
9
Buckling of a holey column.
Soft Matter. 2016 Sep 14;12(34):7112-8. doi: 10.1039/c6sm00948d. Epub 2016 Aug 8.
10
Buckling failures in insect exoskeletons.
Bioinspir Biomim. 2015 Dec 17;11(1):016003. doi: 10.1088/1748-3190/11/1/016003.

引用本文的文献

1
Patterning through instabilities in complex media: theory and applications.
Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0442.

本文引用的文献

2
Buckling of stiff polymer rings in weak spherical confinement.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061802. doi: 10.1103/PhysRevE.81.061802. Epub 2010 Jun 23.
3
Spiral patterns in the packing of flexible structures.
Phys Rev Lett. 2006 Oct 20;97(16):166104. doi: 10.1103/PhysRevLett.97.166104.
4
Biomechanics of cellular solids.
J Biomech. 2005 Mar;38(3):377-99. doi: 10.1016/j.jbiomech.2004.09.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验