Suppr超能文献

非平稳随机动力学是主动和不活动行为状态之间自发转换的基础。

Nonstationary Stochastic Dynamics Underlie Spontaneous Transitions between Active and Inactive Behavioral States.

机构信息

Department of Physics, University of Ottawa , Ottawa, Ontario, Canada , K1N 6N5.

Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada, K1H 8M5; Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5; Brain and Mind Research Institute, Department of Medecine, University of Ottawa, Ottawa, Ontario, Canada, K1H 8M5.

出版信息

eNeuro. 2017 Mar 29;4(2). doi: 10.1523/ENEURO.0355-16.2017. eCollection 2017 Mar-Apr.

Abstract

The neural basis of spontaneous movement generation is a fascinating open question. Long-term monitoring of fish, swimming freely in a constant sensory environment, has revealed a sequence of behavioral states that alternate randomly and spontaneously between periods of activity and inactivity. We show that key dynamical features of this sequence are captured by a 1-D diffusion process evolving in a nonlinear double well energy landscape, in which a slow variable modulates the relative depth of the wells. This combination of stochasticity, nonlinearity, and nonstationary forcing correctly captures the vastly different timescales of fluctuations observed in the data (∼1 to ∼1000 s), and yields long-tailed residence time distributions (RTDs) also consistent with the data. In fact, our model provides a simple mechanism for the emergence of long-tailed distributions in spontaneous animal behavior. We interpret the stochastic variable of this dynamical model as a decision-like variable that, upon reaching a threshold, triggers the transition between states. Our main finding is thus the identification of a threshold crossing process as the mechanism governing spontaneous movement initiation and termination, and to infer the presence of underlying nonstationary agents. Another important outcome of our work is a dimensionality reduction scheme that allows similar segments of data to be grouped together. This is done by first extracting geometrical features in the dataset and then applying principal component analysis over the feature space. Our study is novel in its ability to model nonstationary behavioral data over a wide range of timescales.

摘要

自发运动产生的神经基础是一个引人入胜的开放性问题。对在恒定感觉环境中自由游动的鱼类进行长期监测,揭示了一系列行为状态的序列,这些状态随机且自发地在活动和不活动之间交替。我们表明,该序列的关键动力学特征可以通过在非线性双势阱能量景观中演化的一维扩散过程来捕获,其中慢变量调节势阱的相对深度。这种随机性、非线性和非平稳驱动力的组合正确地捕捉到了数据中观察到的差异极大的波动时间尺度(∼1 到∼1000 秒),并产生了与数据一致的长尾居留时间分布(RTD)。事实上,我们的模型为自发动物行为中长尾分布的出现提供了一个简单的机制。我们将这个动力模型中的随机变量解释为一个类似于决策的变量,当它达到一个阈值时,就会触发状态之间的转换。因此,我们的主要发现是将阈交叉过程确定为控制自发运动启动和终止的机制,并推断出潜在的非平稳代理的存在。我们工作的另一个重要结果是一种降维方案,允许将类似的数据段组合在一起。这是通过首先在数据集中提取几何特征,然后在特征空间上应用主成分分析来实现的。我们的研究方法新颖之处在于能够对广泛时间尺度上的非平稳行为数据进行建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/478a/5370279/b774c2a13cbb/enu0021722750001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验