Song Rui, Chen Xiyuan
Appl Opt. 2017 Mar 10;56(8):2265-2272. doi: 10.1364/AO.56.002265.
The fiber optic gyroscope (FOG), one version of an all solid-state rotation sensor, has been widely used in navigation and position applications. However, the elastic-optic effect of fiber will introduce a non-negligible error in the output of FOG in a vibration and shock environment. To overcome the limitations of mechanism structure improvement methods and the traditional nonlinear analysis approaches, a hybrid algorithm of an optimized local mean decomposition-kernel principal component analysis (OLMD-KPCA) method is proposed in this paper. The vibration signal features of higher frequency components are analyzed by OLMD and their energy is calculated to take shape as the input vector of KPCA. In addition, the output data of three axis gyroscopes in an inertial measurement unit (IMU) under vibration experiment are used to validate the effectiveness and generalization ability of the proposed approach. When compared to the wavelet transform (WT), experimental results demonstrate that the OLMD-KPCA method greatly reduces the vibration noise in the FOG output. Besides, the Allan variance analysis results indicate the error coefficients could be decreased by one order of magnitude and the algorithm stability of OLMD-KPCA is proven by another two sets of data under different vibration conditions.
光纤陀螺仪(FOG)作为全固态旋转传感器的一种,已广泛应用于导航和定位领域。然而,在振动和冲击环境下,光纤的弹光效应会在光纤陀螺仪的输出中引入不可忽视的误差。为克服机构结构改进方法和传统非线性分析方法的局限性,本文提出了一种优化局部均值分解 - 核主成分分析(OLMD - KPCA)的混合算法。通过OLMD分析高频分量的振动信号特征,并计算其能量,以此作为KPCA的输入向量。此外,利用惯性测量单元(IMU)中三轴陀螺仪在振动实验下的输出数据,验证了所提方法的有效性和泛化能力。与小波变换(WT)相比,实验结果表明OLMD - KPCA方法大大降低了光纤陀螺仪输出中的振动噪声。此外,阿伦方差分析结果表明误差系数可降低一个数量级,且在不同振动条件下的另外两组数据也证明了OLMD - KPCA算法的稳定性。