Lu Tao
a Department of Mathematics and Statistics , University of Nevada , Reno , Nevada , USA.
J Biopharm Stat. 2018;28(3):402-412. doi: 10.1080/10543406.2017.1315818. Epub 2017 Apr 18.
The gene regulatory network (GRN) is critical for understanding the regulatory interaction between genes. Time-course microarray experiments provide ample information for constructing GRN. The designs for microarray experiments serve different purposes. However, the experiment design specifically for GRN identification is still sparse. In this article, we use a simulation-based approach to deal with design problems in the framework of nonparametric differential equations. We investigate a number of feasible designs. In particular, we evaluate whether earlier samplings can result in more useful information for GRN identification. We also evaluate the effectiveness of two strategies: more frequent samplings per replicate with fewer replicates versus fewer samplings per replicate with more replicates while keeping the total number of samplings constant. The results of our investigation provide quantitative guidance for designing and selecting microarray experiments for the purpose of GRN identification.
基因调控网络(GRN)对于理解基因之间的调控相互作用至关重要。时间序列微阵列实验为构建GRN提供了丰富的信息。微阵列实验的设计服务于不同的目的。然而,专门用于GRN识别的实验设计仍然很少。在本文中,我们使用基于模拟的方法来处理非参数微分方程框架下的设计问题。我们研究了许多可行的设计。特别是,我们评估早期采样是否能为GRN识别带来更多有用信息。我们还评估了两种策略的有效性:每个重复进行更频繁采样但重复次数较少,与每个重复进行较少采样但重复次数较多,同时保持采样总数不变。我们的研究结果为设计和选择用于GRN识别的微阵列实验提供了定量指导。