Suppr超能文献

具有加性噪声的基因调控网络的稳定性分析

Stability analysis of genetic regulatory network with additive noises.

作者信息

Jin Yufang, Lindsey Merry

机构信息

Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.

出版信息

BMC Genomics. 2008;9 Suppl 1(Suppl 1):S21. doi: 10.1186/1471-2164-9-S1-S21.

Abstract

BACKGROUND

Genetic regulatory networks (GRN) can be described by differential equations with SUM logic which has been found in many natural systems. Identification of the network components and transcriptional rates are critical to the output behavior of the system. Though transcriptional rates cannot be measured in vivo, biologists have shown that they are alterable through artificial factors in vitro.

RESULTS

This study presents the theoretical research work on a novel nonlinear control and stability analysis of genetic regulatory networks. The proposed control scheme can drive the genetic regulatory network to desired levels by adjusting transcriptional rates. Asymptotic stability proof is conducted with Lyapunov argument for both noise-free and additive noises cases. Computer simulation results show the effectiveness of the control design and robustness of the regulation scheme with additive noises.

CONCLUSIONS

With the knowledge of interaction between transcriptional factors and gene products, the research results can be applied in the design of model-based experiments to regulate gene expression profiles.

摘要

背景

遗传调控网络(GRN)可用具有和逻辑的微分方程来描述,这种逻辑在许多自然系统中都能找到。识别网络组件和转录速率对于系统的输出行为至关重要。虽然转录速率无法在体内测量,但生物学家已表明它们可在体外通过人工因素改变。

结果

本研究提出了关于遗传调控网络新型非线性控制和稳定性分析的理论研究工作。所提出的控制方案可通过调整转录速率将遗传调控网络驱动到期望水平。针对无噪声和加性噪声情况,用李雅普诺夫论证进行了渐近稳定性证明。计算机模拟结果表明了控制设计的有效性以及该调控方案在加性噪声情况下的鲁棒性。

结论

基于转录因子与基因产物之间相互作用的知识,研究结果可应用于基于模型的实验设计,以调控基因表达谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c9/2386064/8ebbd8958d2e/1471-2164-9-S1-S21-1.jpg

相似文献

1
Stability analysis of genetic regulatory network with additive noises.
BMC Genomics. 2008;9 Suppl 1(Suppl 1):S21. doi: 10.1186/1471-2164-9-S1-S21.
2
Robust Gene Circuit Control Design for Time-Delayed Genetic Regulatory Networks Without SUM Regulatory Logic.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Nov-Dec;15(6):2086-2093. doi: 10.1109/TCBB.2018.2825445. Epub 2018 Apr 11.
3
Gene expression complex networks: synthesis, identification, and analysis.
J Comput Biol. 2011 Oct;18(10):1353-67. doi: 10.1089/cmb.2010.0118. Epub 2011 May 6.
5
Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
Biosystems. 2017 May;155:29-41. doi: 10.1016/j.biosystems.2016.12.004. Epub 2017 Feb 28.
6
Estimating parameters in genetic regulatory networks with SUM logic.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1371-4. doi: 10.1109/IEMBS.2011.6090207.
7
Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress.
PLoS Comput Biol. 2008 Aug 29;4(8):e1000166. doi: 10.1371/journal.pcbi.1000166.
8
Design of experiment for nonlinear dynamic gene regulatory network identification.
J Biopharm Stat. 2018;28(3):402-412. doi: 10.1080/10543406.2017.1315818. Epub 2017 Apr 18.
9
Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants.
Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6494-6499. doi: 10.1073/pnas.1721487115. Epub 2018 May 16.
10

引用本文的文献

2
Knowledge gaps to understanding cardiac macrophage polarization following myocardial infarction.
Biochim Biophys Acta. 2016 Dec;1862(12):2288-2292. doi: 10.1016/j.bbadis.2016.05.013. Epub 2016 May 27.
4
Bayesian parameter estimation for nonlinear modelling of biological pathways.
BMC Syst Biol. 2011;5 Suppl 3(Suppl 3):S9. doi: 10.1186/1752-0509-5-S3-S9. Epub 2011 Dec 23.
7
Promoting synergistic research and education in genomics and bioinformatics.
BMC Genomics. 2008;9 Suppl 1(Suppl 1):I1. doi: 10.1186/1471-2164-9-S1-I1.

本文引用的文献

1
Polyamides as artificial transcription factors: novel tools for molecular medicine?
Angew Chem Int Ed Engl. 2004 May 3;43(19):2472-5. doi: 10.1002/anie.200301745.
2
External control in Markovian genetic regulatory networks: the imperfect information case.
Bioinformatics. 2004 Apr 12;20(6):924-30. doi: 10.1093/bioinformatics/bth008. Epub 2004 Jan 29.
3
Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors.
Nat Biotechnol. 2003 Oct;21(10):1208-14. doi: 10.1038/nbt868. Epub 2003 Sep 7.
4
Designer gene networks: Towards fundamental cellular control.
Chaos. 2001 Mar;11(1):207-220. doi: 10.1063/1.1345702.
5
Fingers reach for the genome.
Nat Biotechnol. 2003 Mar;21(3):242-3. doi: 10.1038/nbt0303-242.
6
Engineered gene circuits.
Nature. 2002 Nov 14;420(6912):224-30. doi: 10.1038/nature01257.
7
Modeling and simulation of genetic regulatory systems: a literature review.
J Comput Biol. 2002;9(1):67-103. doi: 10.1089/10665270252833208.
8
Engineering polydactyl zinc-finger transcription factors.
Nat Biotechnol. 2002 Feb;20(2):135-41. doi: 10.1038/nbt0202-135.
10
Computational studies of gene regulatory networks: in numero molecular biology.
Nat Rev Genet. 2001 Apr;2(4):268-79. doi: 10.1038/35066056.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验