Suppr超能文献

利用高分辨率遥感技术研究低密度树种群的成年个体死亡率。

Adult mortality in a low-density tree population using high-resolution remote sensing.

机构信息

Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, 02912, USA.

Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, 02912, USA.

出版信息

Ecology. 2017 Jun;98(6):1700-1709. doi: 10.1002/ecy.1847. Epub 2017 May 11.

Abstract

We developed a statistical framework to quantify mortality rates in canopy trees observed using time series from high-resolution remote sensing. By timing the acquisition of remote sensing data with synchronous annual flowering in the canopy tree species Handroanthus guayacan, we made 2,596 unique detections of 1,006 individual adult trees within 18,883 observation attempts on Barro Colorado Island, Panama (BCI) during an 11-yr period. There were 1,057 observation attempts that resulted in missing data due to cloud cover or incomplete spatial coverage. Using the fraction of 123 individuals from an independent field sample that were detected by satellite data (109 individuals, 88.6%), we estimate that the adult population for this species on BCI was 1,135 individuals. We used a Bayesian state-space model that explicitly accounted for the probability of tree detection and missing observations to compute an annual adult mortality rate of 0.2%·yr (SE = 0.1, 95% CI = 0.06-0.45). An independent estimate of the adult mortality rate from 260 field-checked trees closely matched the landscape-scale estimate (0.33%·yr , SE = 0.16, 95% CI = 0.12-0.74). Our proof-of-concept study shows that one can remotely estimate adult mortality rates for canopy tree species precisely in the presence of variable detection and missing observations.

摘要

我们开发了一个统计框架,用于量化使用高分辨率遥感时间序列观测到的树冠树木的死亡率。通过将遥感数据的获取时间与树冠树种 Handroanthus guayacan 的同步年度开花时间相匹配,我们在巴拿马巴罗科罗拉多岛(BCI)进行了 11 年的研究中,在 18883 次观测尝试中对 1006 株成年树木进行了 2596 次独特的检测,其中有 1057 次观测由于云层覆盖或空间覆盖不完整而导致数据缺失。利用独立野外样本中被卫星数据检测到的 123 个个体的分数(109 个个体,88.6%),我们估计该物种在 BCI 的成年种群数量为 1135 个个体。我们使用贝叶斯状态空间模型来明确考虑树木检测和缺失观测的概率,以计算出该物种每年的成年死亡率为 0.2%·yr(SE=0.1,95%CI=0.06-0.45)。来自 260 棵经过实地检查的树木的独立成年死亡率估计与景观尺度的估计值(0.33%·yr,SE=0.16,95%CI=0.12-0.74)非常匹配。我们的概念验证研究表明,即使在存在可变检测和缺失观测的情况下,也可以远程精确估计树冠树种的成年死亡率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验