Suppr超能文献

质子治疗期间短寿命正电子发射体的束流成像。

Beam-on imaging of short-lived positron emitters during proton therapy.

作者信息

Buitenhuis H J T, Diblen F, Brzezinski K W, Brandenburg S, Dendooven P

机构信息

KVI-Center for Advanced Radiation Technology, University of Groningen, Zernikelaan 25, 9747 AA, Groningen, Netherlands.

出版信息

Phys Med Biol. 2017 Jun 21;62(12):4654-4672. doi: 10.1088/1361-6560/aa6b8c. Epub 2017 Apr 5.

Abstract

In vivo dose delivery verification in proton therapy can be performed by positron emission tomography (PET) of the positron-emitting nuclei produced by the proton beam in the patient. A PET scanner installed in the treatment position of a proton therapy facility that takes data with the beam on will see very short-lived nuclides as well as longer-lived nuclides. The most important short-lived nuclide for proton therapy is N (Dendooven et al 2015 Phys. Med. Biol. 60 8923-47), which has a half-life of 11 ms. The results of a proof-of-principle experiment of beam-on PET imaging of short-lived N nuclei are presented. The Philips Digital Photon Counting Module TEK PET system was used, which is based on LYSO scintillators mounted on digital SiPM photosensors. A 90 MeV proton beam from the cyclotron at KVI-CART was used to investigate the energy and time spectra of PET coincidences during beam-on. Events coinciding with proton bunches, such as prompt gamma rays, were removed from the data via an anti-coincidence filter with the cyclotron RF. The resulting energy spectrum allowed good identification of the 511 keV PET counts during beam-on. A method was developed to subtract the long-lived background from the N image by introducing a beam-off period into the cyclotron beam time structure. We measured 2D images and 1D profiles of the N distribution. A range shift of 5 mm was measured as 6  ±  3 mm using the N profile. A larger, more efficient, PET system with a higher data throughput capability will allow beam-on N PET imaging of single spots in the distal layer of an irradiation with an increased signal-to-background ratio and thus better accuracy. A simulation shows that a large dual panel scanner, which images a single spot directly after it is delivered, can measure a 5 mm range shift with millimeter accuracy: 5.5  ±  1.1 mm for 1  ×  10 protons and 5.2  ±  0.5 mm for 5  ×  10 protons. This makes fast and accurate feedback on the dose delivery during treatment possible.

摘要

质子治疗中的体内剂量输送验证可通过对患者体内质子束产生的正电子发射核进行正电子发射断层扫描(PET)来实现。安装在质子治疗设施治疗位置的PET扫描仪在束流开启时采集数据,会看到寿命极短的核素以及寿命较长的核素。质子治疗中最重要的短寿命核素是N(Dendooven等人,2015年,《物理医学与生物学》,60卷,8923 - 47页),其半衰期为11毫秒。本文展示了对短寿命N核素进行束流开启PET成像的原理验证实验结果。使用了基于安装在数字硅光电倍增管(SiPM)光电传感器上的LYSO闪烁体的飞利浦数字光子计数模块TEK PET系统。来自KVI - CART回旋加速器的90 MeV质子束用于研究束流开启期间PET符合事件的能量和时间谱。与质子束团同时发生的事件,如瞬发伽马射线,通过与回旋加速器射频的反符合滤波器从数据中去除。所得能量谱使得在束流开启期间能够很好地识别511 keV的PET计数。通过在回旋加速器束流时间结构中引入束流关闭期,开发了一种从N图像中减去长寿命本底的方法。我们测量了N分布的二维图像和一维轮廓。使用N轮廓测量到5毫米的射程位移为6 ± 3毫米。一个更大、更高效且具有更高数据通量能力的PET系统将允许在照射远端层的单个点进行束流开启的N PET成像,具有更高的信噪比,从而具有更高的精度。模拟表明,一个大型双面板扫描仪在单个点输送后直接对其成像,能够以毫米精度测量5毫米的射程位移:对于1×10个质子为5.5 ± 1.1毫米,对于5×10个质子为5.2 ± 0.5毫米。这使得在治疗期间对剂量输送进行快速准确的反馈成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验