Durante Marco, Parodi Katia
Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany.
Front Phys. 2020 Aug 28;8:00326. doi: 10.3389/fphy.2020.00326.
Heavy ion therapy can deliver high doses with high precision. However, image guidance is needed to reduce range uncertainty. Radioactive ions are potentially ideal projectiles for radiotherapy because their decay can be used to visualize the beam. Positron-emitting ions that can be visualized with PET imaging were already studied for therapy application during the pilot therapy project at the Lawrence Berkeley Laboratory, and later within the EULIMA EU project, the GSI therapy trial in Germany, MEDICIS at CERN, and at HIMAC in Japan. The results show that radioactive ion beams provide a large improvement in image quality and signal-to-noise ratio compared to stable ions. The main hindrance toward a clinical use of radioactive ions is their challenging production and the low intensities of the beams. New research projects are ongoing in Europe and Japan to assess the advantages of radioactive ion beams for therapy, to develop new detectors, and to build sources of radioactive ions for medical synchrotrons.
重离子疗法能够高精度地输送高剂量。然而,需要图像引导来减少射程不确定性。放射性离子可能是放射治疗的理想射弹,因为它们的衰变可用于使束流可视化。在劳伦斯伯克利国家实验室的试点治疗项目期间,以及后来在EULIMA欧盟项目、德国的GSI治疗试验、欧洲核子研究组织的MEDICIS以及日本的HIMAC中,已经对可通过PET成像可视化的发射正电子离子进行了治疗应用研究。结果表明,与稳定离子相比,放射性离子束在图像质量和信噪比方面有了很大改善。放射性离子临床应用的主要障碍是其生产具有挑战性以及束流强度较低。欧洲和日本正在进行新的研究项目,以评估放射性离子束在治疗方面的优势、开发新探测器以及为医用同步加速器建造放射性离子源。