Suppr超能文献

尿肾损伤分子-1、中性粒细胞明胶酶相关脂质运载蛋白和N-乙酰-β-D-氨基葡萄糖苷酶预测慢性肾脏病进展及不良结局的效能

Performance of urinary kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, and N-acetyl-β-D-glucosaminidase to predict chronic kidney disease progression and adverse outcomes.

作者信息

Lobato G R, Lobato M R, Thomé F S, Veronese F V

机构信息

Programa de Pós Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.

Serviço de Nefrologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil.

出版信息

Braz J Med Biol Res. 2017 Mar 30;50(5):e6106. doi: 10.1590/1414-431X20176106.

Abstract

Urinary biomarkers can predict the progression of chronic kidney disease (CKD). In this study, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and N-acetyl-β-D-glucosaminidase (NAG) were correlated with the stages of CKD, and the association of these biomarkers with CKD progression and adverse outcomes was determined. A total of 250 patients, including 111 on hemodialysis, were studied. Urinary KIM-1, NGAL, and NAG were measured at baseline. Patients not on dialysis at baseline who progressed to a worse CKD stage were compared with those who did not progress. The association of each biomarker and selected covariates with progression to more advanced stages of CKD, end-stage kidney disease, or death was evaluated by Poisson regression. NGAL was moderately correlated (rs=0.467, P<0.001) with the five stages of CKD; KIM-1 and NAG were also correlated, but weakly. Sixty-four patients (46%) progressed to a more advanced stage of CKD. Compared to non-progressors, those patients exhibited a trend to higher levels of KIM-1 (P=0.064) and NGAL (P=0.065). In patients not on dialysis at baseline, NGAL was independently associated with progression of CKD, ESKD, or death (RR=1.022 for 300 ng/mL intervals; CI=1.007-1.037, P=0.004). In patients on dialysis, for each 300-ng/mL increase in urinary NGAL, there was a 1.3% increase in the risk of death (P=0.039). In conclusion, urinary NGAL was associated with adverse renal outcomes and increased risk of death in this cohort. If baseline urinary KIM-1 and NGAL predict progression to worse stages of CKD is something yet to be explored.

摘要

尿生物标志物可预测慢性肾脏病(CKD)的进展。在本研究中,肾损伤分子-1(KIM-1)、中性粒细胞明胶酶相关脂质运载蛋白(NGAL)和N-乙酰-β-D-氨基葡萄糖苷酶(NAG)与CKD的分期相关,并确定了这些生物标志物与CKD进展及不良结局的关联。共研究了250例患者,其中111例接受血液透析。在基线时测定尿KIM-1、NGAL和NAG。将基线时未接受透析且病情进展至更差CKD分期的患者与未进展的患者进行比较。通过泊松回归评估每种生物标志物及选定协变量与进展至更晚期CKD、终末期肾病或死亡的关联。NGAL与CKD的五个分期呈中度相关(rs=0.467,P<0.001);KIM-1和NAG也相关,但相关性较弱。64例患者(46%)进展至更晚期的CKD。与未进展者相比,这些患者的KIM-1(P=0.064)和NGAL(P=0.065)水平有升高趋势。在基线时未接受透析的患者中,NGAL与CKD进展、ESKD或死亡独立相关(每300 ng/mL间隔RR=1.022;CI=1.007-1.037,P=0.004)。在接受透析的患者中,尿NGAL每增加300 ng/mL,死亡风险增加1.3%(P=0.039)。总之,在该队列中,尿NGAL与不良肾脏结局及死亡风险增加相关。基线尿KIM-1和NGAL是否能预测进展至更差的CKD分期还有待探索。

相似文献

3
Urine Kidney Injury Biomarkers and Risks of Cardiovascular Disease Events and All-Cause Death: The CRIC Study.
Clin J Am Soc Nephrol. 2017 May 8;12(5):761-771. doi: 10.2215/CJN.08560816. Epub 2017 Mar 2.
5
Use of urine biomarker-derived clusters to predict the risk of chronic kidney disease and all-cause mortality in HIV-infected women.
Nephrol Dial Transplant. 2016 Sep;31(9):1478-85. doi: 10.1093/ndt/gfv426. Epub 2016 Jan 10.
7
The Associations of Blood Kidney Injury Molecule-1 and Neutrophil Gelatinase-Associated Lipocalin with Progression from CKD to ESRD.
Clin J Am Soc Nephrol. 2016 Dec 7;11(12):2141-2149. doi: 10.2215/CJN.02670316. Epub 2016 Nov 16.
8
Urine biomarkers of tubular injury do not improve on the clinical model predicting chronic kidney disease progression.
Kidney Int. 2017 Jan;91(1):196-203. doi: 10.1016/j.kint.2016.09.003. Epub 2016 Oct 28.
9
Prognostic Value of Urinary Calprotectin, NGAL and KIM-1 in Chronic Kidney Disease.
Kidney Blood Press Res. 2018;43(4):1255-1262. doi: 10.1159/000492407. Epub 2018 Aug 3.

引用本文的文献

1
Urinary Neutrophil Gelatinase Associated Lipocalin as a Marker of Nephropathy in Type 2 Diabetic Patients.
Indian J Nephrol. 2025 Jul-Aug;35(4):542-543. doi: 10.25259/IJN_787_2024. Epub 2025 Mar 11.
2
Biomarkers of chronic kidney disease in older individuals: navigating complexity in diagnosis.
Front Med (Lausanne). 2024 Jul 11;11:1397160. doi: 10.3389/fmed.2024.1397160. eCollection 2024.
5
SGLT2 inhibitors in the treatment of type 2 cardiorenal syndrome: Focus on renal tubules.
Front Nephrol. 2023 Jan 12;2:1109321. doi: 10.3389/fneph.2022.1109321. eCollection 2022.
6
Revisiting the Role of NAG across the Continuum of Kidney Disease.
Bioengineering (Basel). 2023 Apr 4;10(4):444. doi: 10.3390/bioengineering10040444.
7
Novel Biomarkers of Kidney Disease in Advanced Heart Failure: Beyond GFR and Proteinuria.
Curr Heart Fail Rep. 2022 Aug;19(4):223-235. doi: 10.1007/s11897-022-00557-y. Epub 2022 May 28.
8
Soluble Interleukin-2 Receptor Predicts Treatment Outcome in Patients With Autoimmune Tubulointerstitial Nephritis. A Preliminary Study.
Front Med (Lausanne). 2022 Feb 25;9:827388. doi: 10.3389/fmed.2022.827388. eCollection 2022.
9
Pathomechanisms in the Kidneys in Selected Protozoan Parasitic Infections.
Int J Mol Sci. 2021 Apr 19;22(8):4209. doi: 10.3390/ijms22084209.

本文引用的文献

1
Are Urinary Tubular Injury Markers Useful in Chronic Kidney Disease? A Systematic Review and Meta Analysis.
PLoS One. 2016 Dec 1;11(12):e0167334. doi: 10.1371/journal.pone.0167334. eCollection 2016.
2
US Renal Data System 2015 Annual Data Report: Epidemiology of Kidney Disease in the United States.
Am J Kidney Dis. 2016 Mar;67(3 Suppl 1):Svii, S1-305. doi: 10.1053/j.ajkd.2015.12.014.
3
Renal replacement therapy in Europe: a summary of the 2012 ERA-EDTA Registry Annual Report.
Clin Kidney J. 2015 Jun;8(3):248-61. doi: 10.1093/ckj/sfv014. Epub 2015 Mar 23.
7
Biomarkers of renal function, which and when?
Clin Chim Acta. 2015 Jan 1;438:350-7. doi: 10.1016/j.cca.2014.08.039. Epub 2014 Sep 3.
8
Acute kidney injury and chronic kidney disease as interconnected syndromes.
N Engl J Med. 2014 Jul 3;371(1):58-66. doi: 10.1056/NEJMra1214243.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验