Suppr超能文献

游离肌动蛋白通过清道夫受体MARCO相互作用损害巨噬细胞的细菌防御能力,而血浆凝溶胶蛋白可使其逆转。

Free actin impairs macrophage bacterial defenses via scavenger receptor MARCO interaction with reversal by plasma gelsolin.

作者信息

Ordija Christine M, Chiou Terry Ting-Yu, Yang Zhiping, Deloid Glen M, de Oliveira Valdo Melina, Wang Zhi, Bedugnis Alice, Noah Terry L, Jones Samuel, Koziel Henry, Kobzik Lester

机构信息

Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.

Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang-Gung University College of Medicine, Kaohsiung, Taiwan.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2017 Jun 1;312(6):L1018-L1028. doi: 10.1152/ajplung.00067.2017. Epub 2017 Apr 6.

Abstract

Lung injury can release intracellular actin into the alveolar milieu and is also associated with increased susceptibility to secondary infections. We investigated the effect of free (extracellular) actin on lung macrophage host defense functions. Western blot analysis demonstrated free actin release into the lung lavage fluids of mouse models of ozone injury, influenza infection, and secondary pneumococcal pneumonia and in samples from patients following burn and inhalation injury. Using levels comparable with those observed in lung injury, we found that free actin markedly inhibited murine lung macrophage binding and uptake in vitro of , , and , (e.g., , mean %inhibition, actin vs. vehicle: 85 ± 0.3 (SD); = 22, < .001). Similar effects were observed on the ability of primary human macrophages to bind and ingest fluorescent (~75% inhibition). Plasma gelsolin (pGSN), a protein that functions to bind and cleave actin, restored bacterial binding and uptake by both murine and human macrophages. Scavenger receptor inhibitors reduced binding of fluorescent actin by murine macrophages [fluorescence index (×10) after incubation with vehicle, actin, or actin + polyinosinic acid, respectively: 0.8 ± 0.7, 101.7 ± 50.7, or 52.7 ± 16.9; = 5-6, < 0.05]. In addition, actin binding was reduced in a MARCO/SR-AI/II-deficient cell line and by normal AMs obtained from MARCO mice. After release from injured cells during lung injury, free actin likely contributes to impaired host defense by blocking scavenger receptor binding of bacteria. This mechanism for increased risk of secondary infections after lung injury or inflammation may represent another target for therapeutic intervention with pGSN.

摘要

肺损伤可使细胞内肌动蛋白释放到肺泡环境中,并且还与继发感染易感性增加相关。我们研究了游离(细胞外)肌动蛋白对肺巨噬细胞宿主防御功能的影响。蛋白质印迹分析表明,在臭氧损伤、流感感染和继发性肺炎球菌肺炎小鼠模型的肺灌洗液中以及烧伤和吸入性损伤患者的样本中均有游离肌动蛋白释放。使用与肺损伤中观察到的水平相当的浓度,我们发现游离肌动蛋白在体外显著抑制小鼠肺巨噬细胞对金黄色葡萄球菌、大肠杆菌和肺炎链球菌的结合与摄取(例如,金黄色葡萄球菌,平均抑制率,肌动蛋白与溶媒对照:85±0.3(标准差);n = 22,P <.001)。在原代人巨噬细胞结合和摄取荧光大肠杆菌的能力上也观察到类似效应(约75%抑制)。血浆凝溶胶蛋白(pGSN),一种具有结合和切割肌动蛋白功能的蛋白质,可恢复小鼠和人巨噬细胞对细菌的结合与摄取。清道夫受体抑制剂减少了小鼠巨噬细胞对荧光肌动蛋白的结合[分别与溶媒、肌动蛋白或肌动蛋白+多聚肌苷酸孵育后的荧光指数(×10):0.8±0.7、101.7±50.7或52.7±16.9;n = 5 - 6,P < 0.05]。此外,在MARCO/SR - AI/II缺陷细胞系以及从MARCO小鼠获得的正常肺泡巨噬细胞中,肌动蛋白结合减少。在肺损伤期间从受损细胞释放后,游离肌动蛋白可能通过阻断细菌的清道夫受体结合而导致宿主防御受损。这种肺损伤或炎症后继发感染风险增加的机制可能代表了血浆凝溶胶蛋白治疗干预的另一个靶点。

相似文献

1
Free actin impairs macrophage bacterial defenses via scavenger receptor MARCO interaction with reversal by plasma gelsolin.
Am J Physiol Lung Cell Mol Physiol. 2017 Jun 1;312(6):L1018-L1028. doi: 10.1152/ajplung.00067.2017. Epub 2017 Apr 6.
2
Plasma gelsolin improves lung host defense against pneumonia by enhancing macrophage NOS3 function.
Am J Physiol Lung Cell Mol Physiol. 2015 Jul 1;309(1):L11-6. doi: 10.1152/ajplung.00094.2015. Epub 2015 May 8.
7
MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages.
J Immunol. 2005 Nov 1;175(9):6058-64. doi: 10.4049/jimmunol.175.9.6058.
10
Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor.
PLoS Pathog. 2018 Mar 9;14(3):e1006914. doi: 10.1371/journal.ppat.1006914. eCollection 2018 Mar.

引用本文的文献

1
Adjunctive Recombinant Human Plasma Gelsolin for Severe Coronavirus Disease 2019 Pneumonia.
Open Forum Infect Dis. 2022 Jul 25;9(8):ofac357. doi: 10.1093/ofid/ofac357. eCollection 2022 Aug.
2
Exploratory Investigation of the Plasma Proteome Associated with the Endotheliopathy of Trauma.
Int J Mol Sci. 2022 Jun 1;23(11):6213. doi: 10.3390/ijms23116213.
3
Recombinant human plasma gelsolin (rhu-pGSN) in a patient hospitalized with critical COVID-19 pneumonia.
Clin Infect Pract. 2021 Nov;12:100088. doi: 10.1016/j.clinpr.2021.100088. Epub 2021 Aug 10.
4
Anti-Fibrotic Activity of an Antimicrobial Peptide in a Drosophila Model.
J Innate Immun. 2021;13(6):376-390. doi: 10.1159/000516104. Epub 2021 May 17.
5
Traumatic injury is associated with reduced deoxyribonuclease activity and dysregulation of the actin scavenging system.
Burns Trauma. 2021 Apr 1;9:tkab001. doi: 10.1093/burnst/tkab001. eCollection 2021 Jan.
6
Plasma gelsolin modulates the production and fate of IL-1β-containing microparticles following high-pressure exposure and decompression.
J Appl Physiol (1985). 2021 May 1;130(5):1604-1613. doi: 10.1152/japplphysiol.01062.2020. Epub 2021 Mar 25.
8
Recombinant Human Plasma Gelsolin Improves Survival and Attenuates Lung Injury in a Murine Model of Multidrug-Resistant Pneumonia.
Open Forum Infect Dis. 2020 Jun 19;7(8):ofaa236. doi: 10.1093/ofid/ofaa236. eCollection 2020 Aug.
10
Lung macrophages: current understanding of their roles in Ozone-induced lung diseases.
Crit Rev Toxicol. 2020 Apr;50(4):310-323. doi: 10.1080/10408444.2020.1762537. Epub 2020 May 27.

本文引用的文献

2
Influenza and Bacterial Superinfection: Illuminating the Immunologic Mechanisms of Disease.
Infect Immun. 2015 Oct;83(10):3764-70. doi: 10.1128/IAI.00298-15. Epub 2015 Jul 27.
3
Plasma gelsolin improves lung host defense against pneumonia by enhancing macrophage NOS3 function.
Am J Physiol Lung Cell Mol Physiol. 2015 Jul 1;309(1):L11-6. doi: 10.1152/ajplung.00094.2015. Epub 2015 May 8.
4
Association between early airway damage-associated molecular patterns and subsequent bacterial infection in patients with inhalational and burn injury.
Am J Physiol Lung Cell Mol Physiol. 2015 May 1;308(9):L855-60. doi: 10.1152/ajplung.00321.2014. Epub 2015 Mar 13.
6
Scavenger receptors in homeostasis and immunity.
Nat Rev Immunol. 2013 Sep;13(9):621-34. doi: 10.1038/nri3515. Epub 2013 Aug 9.
7
Identifying the interaction between influenza and pneumococcal pneumonia using incidence data.
Sci Transl Med. 2013 Jun 26;5(191):191ra84. doi: 10.1126/scitranslmed.3005982.
8
Therapeutic potential of plasma gelsolin administration in a rat model of sepsis.
Cytokine. 2011 Jun;54(3):235-8. doi: 10.1016/j.cyto.2011.02.006. Epub 2011 Mar 21.
9
Proteomic analysis of human mesenteric lymph.
Shock. 2011 Apr;35(4):331-8. doi: 10.1097/SHK.0b013e318206f654.
10
Postinfluenza bacterial pneumonia: host defenses gone awry.
J Interferon Cytokine Res. 2010 Sep;30(9):643-52. doi: 10.1089/jir.2010.0049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验