Suppr超能文献

A类1型清道夫受体对羧化多壁碳纳米管的选择性摄取及肺泡巨噬细胞吞噬功能受损

Selective Uptake of Carboxylated Multi-Walled Carbon Nanotubes by Class A Type 1 Scavenger Receptors and Impaired Phagocytosis in Alveolar Macrophages.

作者信息

Wang Ruhung, Lohray Rishabh, Chow Erik, Gangupantula Pratima, Smith Loren, Draper Rockford

机构信息

Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.

Department of Chemistry & Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.

出版信息

Nanomaterials (Basel). 2020 Dec 3;10(12):2417. doi: 10.3390/nano10122417.

Abstract

The production and applications of multi-walled carbon nanotubes (MWNTs) have increased despite evidence that MWNTs can be toxic. Recently, we reported that the binding of Pluronic F-108 (PF108)-coated carboxylated MWNTs (C-MWNTs) to macrophages is inhibited by class A scavenger receptors (SR-As) antagonists (R. Wang et al., 2018. Nanotoxicology 12:677-690). The current study investigates the uptake of PF108-coated MWNTs by macrophages lacking SR-A1 and by CHO cells that ectopically express SR-A1. Macrophages without SR-A1 failed to take up C-MWNTs and CHO cells that expressed SR-A1 did take up C-MWNTs, but not pristine MWNTs (P-MWNTs) or amino-functionalized MWNTs (N-MWNTs). The dependence of C-MWNT uptake on SR-A1 is strong evidence that SR-A1 is a receptor for C-MWNTs. The consequences of SR-A1-dependent C-MWNT accumulation on cell viability and phagocytic activity in macrophages were also studied. C-MWNTs were more toxic than P-MWNTs and N-MWNTs in cell proliferation and colony formation tests. C-MWNTs reduced surface SR-A1 levels in RAW 264.7 cells and impaired phagocytic uptake of three known SR-A1 ligands, polystyrene beads, heat-killed , and oxLDL. Altogether, results of this study confirmed that SR-A1 receptors are important for the selective uptake of PF108-coated C-MWNTs and that accumulation of the C-MWNTs impairs phagocytic activity and cell viability in macrophages.

摘要

尽管有证据表明多壁碳纳米管(MWNTs)可能具有毒性,但其生产和应用仍在增加。最近,我们报道了A类清道夫受体(SR-As)拮抗剂可抑制Pluronic F-108(PF108)包被的羧基化MWNTs(C-MWNTs)与巨噬细胞的结合(R. Wang等人,2018年。《纳米毒理学》12:677-690)。本研究调查了缺乏SR-A1的巨噬细胞和异位表达SR-A1的CHO细胞对PF108包被的MWNTs的摄取情况。缺乏SR-A1的巨噬细胞无法摄取C-MWNTs,而表达SR-A1的CHO细胞能够摄取C-MWNTs,但不能摄取原始MWNTs(P-MWNTs)或氨基功能化MWNTs(N-MWNTs)。C-MWNTs摄取对SR-A1的依赖性有力地证明了SR-A1是C-MWNTs的受体。还研究了SR-A1依赖性C-MWNT积累对巨噬细胞活力和吞噬活性的影响。在细胞增殖和集落形成试验中,C-MWNTs比P-MWNTs和N-MWNTs毒性更大。C-MWNTs降低了RAW 264.7细胞表面SR-A1的水平,并损害了对三种已知SR-A1配体(聚苯乙烯珠、热杀死的[具体物质未明确]和氧化低密度脂蛋白)的吞噬摄取。总之,本研究结果证实SR-A1受体对于PF108包被的C-MWNTs的选择性摄取很重要,并且C-MWNTs的积累会损害巨噬细胞的吞噬活性和细胞活力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b615/7761752/ddcc35f78fc0/nanomaterials-10-02417-g001.jpg

相似文献

3
Quantitation of cell-associated carbon nanotubes: selective binding and accumulation of carboxylated carbon nanotubes by macrophages.
Nanotoxicology. 2018 Sep;12(7):677-698. doi: 10.1080/17435390.2018.1472309. Epub 2018 May 26.
6
Diameter effects on cytotoxicity of multi-walled carbon nanotubes.
J Nanosci Nanotechnol. 2009 May;9(5):3025-33. doi: 10.1166/jnn.2009.025.
7
High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells.
Biomaterials. 2015 Nov;70:57-70. doi: 10.1016/j.biomaterials.2015.08.019. Epub 2015 Aug 8.
8
Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells.
Biomaterials. 2009 Sep;30(25):4152-60. doi: 10.1016/j.biomaterials.2009.04.019. Epub 2009 May 27.
9
Scavenger Receptor A1 Signaling Pathways Affecting Macrophage Functions in Innate and Adaptive Immunity.
Immunol Invest. 2022 Aug;51(6):1725-1755. doi: 10.1080/08820139.2021.2020812. Epub 2022 Jan 5.
10
Water soluble multi-walled carbon nanotubes enhance peritoneal macrophage activity in vivo.
J Nanosci Nanotechnol. 2010 Dec;10(12):8663-9. doi: 10.1166/jnn.2010.2684.

引用本文的文献

2
The Internalization Pathways of Liposomes, PLGA, and Magnetic Nanoparticles in Neutrophils.
Biomedicines. 2024 Sep 25;12(10):2180. doi: 10.3390/biomedicines12102180.
3
Macrophages in immunoregulation and therapeutics.
Signal Transduct Target Ther. 2023 May 22;8(1):207. doi: 10.1038/s41392-023-01452-1.
5
Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes.
Int J Mol Sci. 2022 Aug 10;23(16):8889. doi: 10.3390/ijms23168889.

本文引用的文献

1
The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells.
Chemosphere. 2020 Apr;245:125624. doi: 10.1016/j.chemosphere.2019.125624. Epub 2019 Dec 12.
2
3
Quantitation of cell-associated carbon nanotubes: selective binding and accumulation of carboxylated carbon nanotubes by macrophages.
Nanotoxicology. 2018 Sep;12(7):677-698. doi: 10.1080/17435390.2018.1472309. Epub 2018 May 26.
4
Super-Resolution Microscopy Unveils Dynamic Heterogeneities in Nanoparticle Protein Corona.
Small. 2017 Nov;13(41). doi: 10.1002/smll.201701631. Epub 2017 Sep 18.
6
A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease.
J Immunol. 2017 May 15;198(10):3775-3789. doi: 10.4049/jimmunol.1700373.
7
Free actin impairs macrophage bacterial defenses via scavenger receptor MARCO interaction with reversal by plasma gelsolin.
Am J Physiol Lung Cell Mol Physiol. 2017 Jun 1;312(6):L1018-L1028. doi: 10.1152/ajplung.00067.2017. Epub 2017 Apr 6.
8
Detecting Sonolysis of Polyethylene Glycol Upon Functionalizing Carbon Nanotubes.
Methods Mol Biol. 2017;1530:147-164. doi: 10.1007/978-1-4939-6646-2_10.
9
Quantitative assessment of adipocyte differentiation in cell culture.
Adipocyte. 2016 Sep 26;5(4):351-358. doi: 10.1080/21623945.2016.1240137. eCollection 2016 Oct-Dec.
10
Can Carbon Nanotubes Deliver on Their Promise in Biology? Harnessing Unique Properties for Unparalleled Applications.
ACS Cent Sci. 2016 Apr 27;2(4):190-200. doi: 10.1021/acscentsci.6b00005. Epub 2016 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验