Suppr超能文献

同步经颅交流电刺激-功能磁共振成像揭示功率同步神经活动对静息态功能磁共振成像连接性的因果影响。

Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.

作者信息

Bächinger Marc, Zerbi Valerio, Moisa Marius, Polania Rafael, Liu Quanying, Mantini Dante, Ruff Christian, Wenderoth Nicole

机构信息

Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8057 Zürich, Switzerland,

Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8057 Zürich, Switzerland.

出版信息

J Neurosci. 2017 May 3;37(18):4766-4777. doi: 10.1523/JNEUROSCI.1756-16.2017. Epub 2017 Apr 6.

Abstract

Resting state fMRI (rs-fMRI) is commonly used to study the brain's intrinsic neural coupling, which reveals specific spatiotemporal patterns in the form of resting state networks (RSNs). It has been hypothesized that slow rs-fMRI oscillations (<0.1 Hz) are driven by underlying electrophysiological rhythms that typically occur at much faster timescales (>5 Hz); however, causal evidence for this relationship is currently lacking. Here we measured rs-fMRI in humans while applying transcranial alternating current stimulation (tACS) to entrain brain rhythms in left and right sensorimotor cortices. The two driving tACS signals were tailored to the individual's α rhythm (8-12 Hz) and fluctuated in amplitude according to a 1 Hz power envelope. We entrained the left versus right hemisphere in accordance to two different coupling modes where either α oscillations were synchronized between hemispheres (phase-synchronized tACS) or the slower oscillating power envelopes (power-synchronized tACS). Power-synchronized tACS significantly increased rs-fMRI connectivity within the stimulated RSN compared with phase-synchronized or no tACS. This effect outlasted the stimulation period and tended to be more effective in individuals who exhibited a naturally weak interhemispheric coupling. Using this novel approach, our data provide causal evidence that synchronized power fluctuations contribute to the formation of fMRI-based RSNs. Moreover, our findings demonstrate that the brain's intrinsic coupling at rest can be selectively modulated by choosing appropriate tACS signals, which could lead to new interventions for patients with altered rs-fMRI connectivity. Resting state fMRI (rs-fMRI) has become an important tool to estimate brain connectivity. However, relatively little is known about how slow hemodynamic oscillations measured with fMRI relate to electrophysiological processes. It was suggested that slowly fluctuating power envelopes of electrophysiological signals synchronize across brain areas and that the topography of this activity is spatially correlated to resting state networks derived from rs-fMRI. Here we take a novel approach to address this problem and establish a causal link between the power fluctuations of electrophysiological signals and rs-fMRI via a new neuromodulation paradigm, which exploits these power synchronization mechanisms. These novel mechanistic insights bridge different scientific domains and are of broad interest to researchers in the fields of Medical Imaging, Neuroscience, Physiology, and Psychology.

摘要

静息态功能磁共振成像(rs-fMRI)通常用于研究大脑的内在神经耦合,这种耦合以静息态网络(RSN)的形式揭示特定的时空模式。据推测,缓慢的rs-fMRI振荡(<0.1赫兹)是由通常发生在快得多的时间尺度(>5赫兹)的潜在电生理节律驱动的;然而,目前缺乏这种关系的因果证据。在这里,我们在对人类进行rs-fMRI测量的同时,应用经颅交流电刺激(tACS)来诱导左右感觉运动皮层的脑节律。两个驱动tACS信号根据个体的α节律(8-12赫兹)进行调整,并根据1赫兹的功率包络在幅度上波动。我们根据两种不同的耦合模式分别诱导左半球和右半球,其中α振荡在半球之间同步(相位同步tACS)或较慢振荡的功率包络同步(功率同步tACS)。与相位同步或无tACS相比,功率同步tACS显著增加了受刺激RSN内的rs-fMRI连接性。这种效应在刺激期之后仍然存在,并且在自然半球间耦合较弱的个体中往往更有效。通过这种新方法,我们的数据提供了因果证据,表明同步的功率波动有助于基于fMRI的RSN的形成。此外,我们的研究结果表明,通过选择合适的tACS信号,可以选择性地调节大脑在静息状态下的内在耦合,这可能为rs-fMRI连接性改变的患者带来新的干预措施。静息态功能磁共振成像(rs-fMRI)已成为估计大脑连接性的重要工具。然而,对于通过fMRI测量的缓慢血流动力学振荡如何与电生理过程相关,人们了解相对较少。有人提出,电生理信号缓慢波动的功率包络在脑区之间同步,并且这种活动的地形在空间上与从rs-fMRI得出的静息态网络相关。在这里,我们采用一种新方法来解决这个问题,并通过一种利用这些功率同步机制的新神经调节范式,在电生理信号的功率波动和rs-fMRI之间建立因果联系。这些新的机制性见解跨越了不同的科学领域,对医学成像、神经科学、生理学和心理学领域的研究人员具有广泛的兴趣。

相似文献

1
Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.
J Neurosci. 2017 May 3;37(18):4766-4777. doi: 10.1523/JNEUROSCI.1756-16.2017. Epub 2017 Apr 6.
2
Transcranial alternating current stimulation modulates spontaneous low frequency fluctuations as measured with fMRI.
Neuroimage. 2016 Nov 1;141:88-107. doi: 10.1016/j.neuroimage.2016.07.005. Epub 2016 Jul 5.
3
Brain Network Mechanisms Underlying Motor Enhancement by Transcranial Entrainment of Gamma Oscillations.
J Neurosci. 2016 Nov 23;36(47):12053-12065. doi: 10.1523/JNEUROSCI.2044-16.2016.
4
Different coupling modes mediate cortical cross-frequency interactions.
Neuroimage. 2016 Oct 15;140:76-82. doi: 10.1016/j.neuroimage.2015.11.035. Epub 2015 Nov 23.
6
Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
Neuroimage. 2012 May 1;60(4):2062-72. doi: 10.1016/j.neuroimage.2012.02.031. Epub 2012 Feb 22.
7
Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
J Neurosci Res. 2018 Oct;96(10):1689-1698. doi: 10.1002/jnr.24257. Epub 2018 May 14.
8
Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.
J Neurosci. 2016 Jun 1;36(22):6030-40. doi: 10.1523/JNEUROSCI.0187-16.2016.

引用本文的文献

2
Individual alpha frequency tACS reduces static functional connectivity across the default mode network.
Front Hum Neurosci. 2025 May 14;19:1534321. doi: 10.3389/fnhum.2025.1534321. eCollection 2025.
3
Phase-lagged tACS between executive and default mode networks modulates working memory.
Sci Rep. 2025 Mar 17;15(1):9171. doi: 10.1038/s41598-025-91881-5.
8
Closing the loop between brain and electrical stimulation: towards precision neuromodulation treatments.
Transl Psychiatry. 2023 Aug 14;13(1):279. doi: 10.1038/s41398-023-02565-5.
10
Towards causal mechanisms of consciousness through focused transcranial brain stimulation.
Neurosci Conscious. 2023 Apr 21;2023(1):niad008. doi: 10.1093/nc/niad008. eCollection 2023.

本文引用的文献

1
Brain Network Mechanisms Underlying Motor Enhancement by Transcranial Entrainment of Gamma Oscillations.
J Neurosci. 2016 Nov 23;36(47):12053-12065. doi: 10.1523/JNEUROSCI.2044-16.2016.
2
Sex differences in autism: a resting-state fMRI investigation of functional brain connectivity in males and females.
Soc Cogn Affect Neurosci. 2016 Jun;11(6):1002-16. doi: 10.1093/scan/nsw027. Epub 2016 Mar 17.
3
Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG.
Neuroimage. 2016 Apr 1;129:345-355. doi: 10.1016/j.neuroimage.2016.01.055. Epub 2016 Jan 28.
4
Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS?
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:222-5. doi: 10.1109/EMBC.2015.7318340.
5
BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: A concurrent tACS-fMRI study.
Neuroimage. 2016 Oct 15;140:118-25. doi: 10.1016/j.neuroimage.2015.10.003. Epub 2015 Oct 10.
8
BOLD fMRI Correlation Reflects Frequency-Specific Neuronal Correlation.
Curr Biol. 2015 May 18;25(10):1368-74. doi: 10.1016/j.cub.2015.03.049. Epub 2015 Apr 30.
9
MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.
PLoS One. 2015 Apr 22;10(4):e0124126. doi: 10.1371/journal.pone.0124126. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验