Suppr超能文献

用拉链袋封装结构2.0:内质网驻留肽脯氨酰顺反异构酶对羟脯氨酸表现出不同活性。

Ziploc-ing the structure 2.0: Endoplasmic reticulum-resident peptidyl prolyl isomerases show different activities toward hydroxyproline.

作者信息

Ishikawa Yoshihiro, Mizuno Kazunori, Bächinger Hans Peter

机构信息

From the Department of Biochemistry and Molecular Biology, Oregon Health & Science University and.

Research Department, Shriners Hospital for Children, Portland, Oregon 97239.

出版信息

J Biol Chem. 2017 Jun 2;292(22):9273-9282. doi: 10.1074/jbc.M116.772657. Epub 2017 Apr 6.

Abstract

Extracellular matrix proteins are biosynthesized in the rough endoplasmic reticulum (rER), and the triple-helical protein collagen is the most abundant extracellular matrix component in the human body. Many enzymes, molecular chaperones, and post-translational modifiers facilitate collagen biosynthesis. Collagen contains a large number of proline residues, so the / isomerization of proline peptide bonds is the rate-limiting step during triple-helix formation. Accordingly, the rER-resident peptidyl prolyl / isomerases (PPIases) play an important role in the zipper-like triple-helix formation in collagen. We previously described this process as "Ziploc-ing the structure" and now provide additional information on the activity of individual rER PPIases. We investigated the substrate preferences of these PPIases using type III collagen, the unhydroxylated quarter fragment of type III collagen, and synthetic peptides as substrates. We observed changes in activity of six rER-resident PPIases, cyclophilin B (encoded by the gene), FKBP13 (), FKBP19 (), FKBP22 (), FKBP23 (), and FKBP65 (), due to posttranslational modifications of proline residues in the substrate. Cyclophilin B and FKBP13 exhibited much lower activity toward post-translationally modified substrates. In contrast, FKBP19, FKBP22, and FKBP65 showed increased activity toward hydroxyproline-containing peptide substrates. Moreover, FKBP22 showed a hydroxyproline-dependent effect by increasing the amount of refolded type III collagen and FKBP19 seems to interact with triple helical type I collagen. Therefore, we propose that hydroxyproline modulates the rate of Ziploc-ing of the triple helix of collagen in the rER.

摘要

细胞外基质蛋白在糙面内质网(rER)中进行生物合成,三螺旋蛋白胶原蛋白是人体中最丰富的细胞外基质成分。许多酶、分子伴侣和翻译后修饰因子促进胶原蛋白的生物合成。胶原蛋白含有大量脯氨酸残基,因此脯氨酸肽键的/异构化是三螺旋形成过程中的限速步骤。相应地,驻留在内质网的肽基脯氨酰/异构酶(PPIases)在胶原蛋白拉链状三螺旋的形成中起重要作用。我们之前将这个过程描述为“拉链式构建结构”,现在提供关于各个内质网PPIases活性的更多信息。我们使用III型胶原蛋白、III型胶原蛋白的未羟基化四分之一片段和合成肽作为底物,研究了这些PPIases的底物偏好性。我们观察到六种驻留在内质网的PPIases,即亲环蛋白B(由基因编码)、FKBP13()、FKBP19()、FKBP22()、FKBP23()和FKBP65()的活性因底物中脯氨酸残基的翻译后修饰而发生变化。亲环蛋白B和FKBP13对翻译后修饰的底物表现出低得多的活性。相反,FKBP19、FKBP22和FKBP65对含羟脯氨酸的肽底物表现出增加的活性。此外,FKBP22通过增加重折叠的III型胶原蛋白的量表现出羟脯氨酸依赖性效应,并且FKBP19似乎与三螺旋I型胶原蛋白相互作用。因此,我们提出羟脯氨酸调节内质网中胶原蛋白三螺旋的拉链式构建速率。

相似文献

2
A substrate preference for the rough endoplasmic reticulum resident protein FKBP22 during collagen biosynthesis.
J Biol Chem. 2014 Jun 27;289(26):18189-201. doi: 10.1074/jbc.M114.561944. Epub 2014 May 12.
3
Ziploc-ing the structure: Triple helix formation is coordinated by rough endoplasmic reticulum resident PPIases.
Biochim Biophys Acta. 2015 Oct;1850(10):1983-93. doi: 10.1016/j.bbagen.2014.12.024. Epub 2015 Jan 10.
4
Structure of human peptidyl-prolyl cis-trans isomerase FKBP22 containing two EF-hand motifs.
Protein Sci. 2014 Jan;23(1):67-75. doi: 10.1002/pro.2391. Epub 2013 Nov 25.
6
Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex.
J Biol Chem. 2009 Jun 26;284(26):17641-7. doi: 10.1074/jbc.M109.007070. Epub 2009 May 6.
8
The rough endoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecular chaperone that interacts with collagens.
J Biol Chem. 2008 Nov 14;283(46):31584-90. doi: 10.1074/jbc.M802535200. Epub 2008 Sep 10.
9
10
Cyclophilin B control of lysine post-translational modifications of skin type I collagen.
PLoS Genet. 2019 Jun 7;15(6):e1008196. doi: 10.1371/journal.pgen.1008196. eCollection 2019 Jun.

引用本文的文献

1
Collagen Biosynthesis and Its Molecular Ensemble: What Remains Unexplored.
Biochemistry. 2025 Aug 5;64(15):3149-3155. doi: 10.1021/acs.biochem.5c00261. Epub 2025 Jul 10.
2
Promoting collagen synthesis: a viable strategy to combat skin ageing.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2488821. doi: 10.1080/14756366.2025.2488821. Epub 2025 Apr 11.
3
Biochemical characterization of collagen I in Warmblood Fragile Foal Syndrome horse lysyl hydroxylase 1 mutation.
MicroPubl Biol. 2025 Jan 3;2025. doi: 10.17912/micropub.biology.001399. eCollection 2025.
5
Sanglifehrin A mitigates multiorgan fibrosis by targeting the collagen chaperone cyclophilin B.
JCI Insight. 2024 Jun 20;9(15):e171162. doi: 10.1172/jci.insight.171162.
6
Changing human hair fibre colour and shape from the follicle.
J Adv Res. 2024 Oct;64:45-65. doi: 10.1016/j.jare.2023.11.013. Epub 2023 Nov 13.
7
Local Net Charge State of Collagen Triple Helix Is a Determinant of FKBP22 Binding to Collagen III.
Int J Mol Sci. 2023 Oct 13;24(20):15156. doi: 10.3390/ijms242015156.
9
The Ehlers-Danlos Syndromes against the Backdrop of Inborn Errors of Metabolism.
Genes (Basel). 2022 Jan 29;13(2):265. doi: 10.3390/genes13020265.

本文引用的文献

1
Prolyl hydroxylation in elastin is not random.
Biochim Biophys Acta. 2016 Oct;1860(10):2169-77. doi: 10.1016/j.bbagen.2016.05.013. Epub 2016 May 11.
2
Collagen structure: new tricks from a very old dog.
Biochem J. 2016 Apr 15;473(8):1001-25. doi: 10.1042/BJ20151169.
4
Comprehensive Characterization of Glycosylation and Hydroxylation of Basement Membrane Collagen IV by High-Resolution Mass Spectrometry.
J Proteome Res. 2016 Jan 4;15(1):245-58. doi: 10.1021/acs.jproteome.5b00767. Epub 2015 Dec 9.
5
Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):E3095-103. doi: 10.1073/pnas.1500851112. Epub 2015 Jun 2.
6
Ziploc-ing the structure: Triple helix formation is coordinated by rough endoplasmic reticulum resident PPIases.
Biochim Biophys Acta. 2015 Oct;1850(10):1983-93. doi: 10.1016/j.bbagen.2014.12.024. Epub 2015 Jan 10.
7
8
A substrate preference for the rough endoplasmic reticulum resident protein FKBP22 during collagen biosynthesis.
J Biol Chem. 2014 Jun 27;289(26):18189-201. doi: 10.1074/jbc.M114.561944. Epub 2014 May 12.
9
Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta.
Nat Med. 2014 Jun;20(6):670-5. doi: 10.1038/nm.3544. Epub 2014 May 4.
10
FKBP14-related Ehlers-Danlos syndrome: expansion of the phenotype to include vascular complications.
Am J Med Genet A. 2014 Jul;164A(7):1750-5. doi: 10.1002/ajmg.a.36492. Epub 2014 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验