Suppr超能文献

有机-无机铜(II)基材料:一种用于光伏应用的低毒、高稳定性光吸收剂。

Organic-Inorganic Copper(II)-Based Material: A Low-Toxic, Highly Stable Light Absorber for Photovoltaic Application.

作者信息

Li Xiaolei, Zhong Xiangli, Hu Yue, Li Bochao, Sheng Yusong, Zhang Yang, Weng Chao, Feng Ming, Han Hongwei, Wang Jinbin

机构信息

Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University , Xiangtan 411105, People's Republic of China.

Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , Wuhan 430074, People's Republic of China.

出版信息

J Phys Chem Lett. 2017 Apr 20;8(8):1804-1809. doi: 10.1021/acs.jpclett.7b00086. Epub 2017 Apr 10.

Abstract

Lead halide perovskite solar cells have recently emerged as a very promising photovoltaic technology due to their excellent power conversion efficiencies; however, the toxicity of lead and the poor stability of perovskite materials remain two main challenges that need to be addressed. Here, for the first time, we report a lead-free, highly stable CHNHCuBrI compound. The CHNHCuBrI films exhibit extraordinary hydrophobic behavior with a contact angle of ∼90°, and their X-ray diffraction patterns remain unchanged even after 4 h of water immersion. UV/vis absorption spectrum shows that CHNHCuBrI compound has an excellent optical absorption over the entire visible spectrum. We applied this copper-based light absorber in printable mesoscopic solar cell for the initial trial and achieved a power conversion efficiency of ∼0.5%. Our study represents an alternative pathway to develop low-toxic and highly stable organic-inorganic hybrid materials for photovoltaic application.

摘要

卤化铅钙钛矿太阳能电池由于其优异的功率转换效率,最近已成为一种非常有前途的光伏技术;然而,铅的毒性和钙钛矿材料的稳定性差仍然是两个需要解决的主要挑战。在此,我们首次报道了一种无铅、高度稳定的CHNHCuBrI化合物。CHNHCuBrI薄膜表现出非凡的疏水行为,接触角约为90°,即使在水浸4小时后,其X射线衍射图谱仍保持不变。紫外/可见吸收光谱表明,CHNHCuBrI化合物在整个可见光谱范围内具有优异的光吸收性能。我们将这种基于铜的光吸收剂应用于可印刷介观太阳能电池进行初步试验,实现了约0.5%的功率转换效率。我们的研究为开发用于光伏应用的低毒且高度稳定的有机-无机杂化材料提供了一条替代途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验