Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
J Chem Phys. 2017 Mar 28;146(12):124120. doi: 10.1063/1.4978897.
We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.
我们使用最近开发的动能分配(KEP)方法来解决类氦原子的量子本征值问题,并获得精确的基态能量和波函数。为了使 KEP 方法能够正确处理电子-电子(排斥)库仑势能,关键是在分配的动能中引入“负质量”项。使用子系统波函数的哈特利型乘积波函数来形成初始试探函数,通过变分搜索来优化绝热参数,从而得到精确的基态能量。这种新方法为解决多电子薛定谔方程这一至关重要的问题提供了新的思路,并有望为预测量子化学开辟新的途径。这里给出的结果非常有希望地表明,可以使用有效的单电子模型来表示多电子系统,这符合密度泛函理论的精神。