Suppr超能文献

分块对瑞利-薛定谔微扰级数收敛性的影响。

Effect of partitioning on the convergence properties of the Rayleigh-Schrödinger perturbation series.

机构信息

Laboratory of Theoretical Chemistry, Faculty of Science, Institute of Chemistry, Eötvös University, H-1518 Budapest 112, P.O. Box. 32, Hungary.

出版信息

J Chem Phys. 2017 Mar 28;146(12):124121. doi: 10.1063/1.4978898.

Abstract

Convergence features of the Rayleigh-Schrödinger perturbation theory (PT) strongly depend on the partitioning applied. We investigate the large order behavior of the Møller-Plesset and Epstein Nesbet partitionings in comparison with a less known partitioning obtained by level shift parameters minimizing the norm of operator Q^W^, with W^ being the perturbation operator while Q standing for the reduced resolvent of the zero order Hamiltonian H^. Numerical results, presented for molecular systems for the first time, indicate that it is possible to find level shift parameters in this way which convert divergent perturbation expansions to convergent ones in some cases. Besides numerical calculations of high-order PT terms, convergence radii of the corresponding perturbation expansions are also estimated using quadratic Padé approximants.

摘要

瑞利-薛定谔微扰理论(PT)的收敛特征强烈依赖于所应用的划分。我们研究了莫勒-普莱塞特和爱泼斯坦-内斯科特划分在大阶数行为上的表现,并将其与一种不太为人知的划分进行了比较,这种划分是通过最小化算符 Q^W^的范数的能级移动参数得到的,其中 W^是微扰算符,Q 是零阶哈密顿算符 H^的约化本征值。首次为分子系统呈现的数值结果表明,有可能以这种方式找到能级移动参数,从而在某些情况下将发散的微扰展开转换为收敛的展开。除了高阶 PT 项的数值计算外,还使用二次帕德逼近法估计了相应微扰展开的收敛半径。

相似文献

3
Summation of perturbation series of eigenvalues and eigenfunctions of anharmonic oscillators.非简谐振子本征值与本征函数的微扰级数求和
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 2):016703. doi: 10.1103/PhysRevE.68.016703. Epub 2003 Jul 25.
5
Perturbation-adapted perturbation theory.微扰适应微扰理论
J Chem Phys. 2022 Jan 7;156(1):011101. doi: 10.1063/5.0079853.
7
Perturbation Expansion of Internally Contracted Coupled-Cluster Theory up to Third Order.三阶内收缩耦合簇理论的微扰展开。
J Chem Theory Comput. 2019 Apr 9;15(4):2291-2305. doi: 10.1021/acs.jctc.8b01301. Epub 2019 Mar 8.
10
Analysis and Assessment of Knowles' Partitioning in Many-Body Perturbation Theory.多体微扰理论中诺尔斯划分的分析与评估
J Chem Theory Comput. 2024 Jun 25;20(12):5094-5104. doi: 10.1021/acs.jctc.4c00166. Epub 2024 Jun 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验