Laboratory of Theoretical Chemistry, Faculty of Science, Institute of Chemistry, Eötvös University, H-1518 Budapest 112, P.O. Box. 32, Hungary.
J Chem Phys. 2017 Mar 28;146(12):124121. doi: 10.1063/1.4978898.
Convergence features of the Rayleigh-Schrödinger perturbation theory (PT) strongly depend on the partitioning applied. We investigate the large order behavior of the Møller-Plesset and Epstein Nesbet partitionings in comparison with a less known partitioning obtained by level shift parameters minimizing the norm of operator Q^W^, with W^ being the perturbation operator while Q standing for the reduced resolvent of the zero order Hamiltonian H^. Numerical results, presented for molecular systems for the first time, indicate that it is possible to find level shift parameters in this way which convert divergent perturbation expansions to convergent ones in some cases. Besides numerical calculations of high-order PT terms, convergence radii of the corresponding perturbation expansions are also estimated using quadratic Padé approximants.
瑞利-薛定谔微扰理论(PT)的收敛特征强烈依赖于所应用的划分。我们研究了莫勒-普莱塞特和爱泼斯坦-内斯科特划分在大阶数行为上的表现,并将其与一种不太为人知的划分进行了比较,这种划分是通过最小化算符 Q^W^的范数的能级移动参数得到的,其中 W^是微扰算符,Q 是零阶哈密顿算符 H^的约化本征值。首次为分子系统呈现的数值结果表明,有可能以这种方式找到能级移动参数,从而在某些情况下将发散的微扰展开转换为收敛的展开。除了高阶 PT 项的数值计算外,还使用二次帕德逼近法估计了相应微扰展开的收敛半径。