Yamazaki Yuto, Nakamura Yasuhiro, Omata Kei, Ise Kazue, Tezuka Yuta, Ono Yoshikiyo, Morimoto Ryo, Nozawa Yukinaga, Gomez-Sanchez Celso E, Tomlins Scott A, Rainey William E, Ito Sadayoshi, Satoh Fumitoshi, Sasano Hironobu
Department of Pathology, and.
Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.
J Clin Endocrinol Metab. 2017 Apr 1;102(4):1182-1192. doi: 10.1210/jc.2016-2986.
Approximately half of patients with primary aldosteronism (PA) have clinically evident disease according to clinical (hypertension) and/or laboratory (aldosterone and renin levels) findings but do not have nodules detectable in routine cross-sectional imaging. However, the detailed histopathologic, steroidogenic, and pathobiological features of cross-sectional image-negative PA are controversial.
To examine histopathology, steroidogenic enzyme expression, and aldosterone-driver gene somatic mutation status in cross-sectional image-negative hyperaldosteronism.
Twenty-five cross-sectional image-negative cases were retrospectively reviewed. In situ adrenal aldosterone production capacity was determined using immunohistochemistry (IHC) of steroidogenic enzymes. Aldosterone-driver gene somatic mutation status (ATP1A1, ATP2B3, CACNA1D, and KCNJ5) was determined in the CYP11B2 immunopositive areas [n = 35; micronodule, n = 32; zona glomerulosa (ZG), n = 3] using next-generation sequencing after macrodissection.
Cases were classified as multiple adrenocortical micronodules (MN; n = 13) or diffuse hyperplasia (DH) of ZG (n = 12) based upon histopathological evaluation and CYP11B2 IHC. Aldosterone-driver gene somatic mutations were detected in 21 of 26 (81%) of CYP11B2-positive cortical micronodules in MN; 17 (65%) mutations were in CACNA1D, 2 (8%) in KCNJ5, and 1 each (4% each) in ATP1A1 and ATP2B. One of 6 (17%) of nodules in DH harbored somatic aldosterone-driver gene mutations (CACNA1D); however, no mutations were detected in CYP11B2-positive nonnodular DH areas.
Morphologic evaluation and CYP11B2 IHC enabled the classification of cross-sectional image-negative hyperaldosteronism into MN and DH. Somatic mutations driving aldosterone overproduction are common in micronodules of MN, suggesting a histological entity possibly related to aldosterone-producing cell cluster development.
根据临床(高血压)和/或实验室(醛固酮和肾素水平)检查结果,约一半的原发性醛固酮增多症(PA)患者有临床明显疾病,但在常规横断面成像中未发现结节。然而,横断面影像阴性的PA的详细组织病理学、类固醇生成和病理生物学特征存在争议。
研究横断面影像阴性的醛固酮增多症的组织病理学、类固醇生成酶表达和醛固酮驱动基因体细胞突变状态。
回顾性分析25例横断面影像阴性的病例。采用类固醇生成酶免疫组织化学(IHC)检测肾上腺原位醛固酮生成能力。在CYP11B2免疫阳性区域[n = 35;微结节,n = 32;球状带(ZG),n = 3],使用宏观解剖后的二代测序确定醛固酮驱动基因体细胞突变状态(ATP1A1、ATP2B3、CACNA1D和KCNJ5)。
根据组织病理学评估和CYP11B2免疫组化,病例分为多发性肾上腺皮质微结节(MN;n = 13)或ZG弥漫性增生(DH;n = 12)。在MN中,26个(81%)CYP11B2阳性皮质微结节中的21个检测到醛固酮驱动基因体细胞突变;17个(65%)突变位于CACNA1D,2个(8%)位于KCNJ5,ATP1A1和ATP2B各有1个(各4%)。DH中的6个结节(17%)中有1个存在体细胞醛固酮驱动基因突变(CACNA1D);然而,在CYP11B2阳性的非结节性DH区域未检测到突变。
形态学评估和CYP11B2免疫组化能够将横断面影像阴性的醛固酮增多症分为MN和DH。醛固酮过度生成的体细胞突变在MN的微结节中很常见,提示可能存在一种与醛固酮产生细胞簇发育相关的组织学实体。