Suppr超能文献

数字乳腺断层合成中的全自动乳头检测

Fully automated nipple detection in digital breast tomosynthesis.

作者信息

Chae Seung-Hoon, Jeong Ji-Wook, Choi Jang-Hwan, Chae Eun Young, Kim Hak Hee, Choi Young-Wook, Lee Sooyeul

机构信息

Electronics and Telecommunications Research Institute (ETRI), Medical Imaging Research Section, 218 Gajeong-ro, Yuseong-gu, Daejeon, 34129, South Korea.

Division of Mechanical and Biomedical Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Daehyeon-dong, Seodaemun-gu, Seoul 03760, South Korea.

出版信息

Comput Methods Programs Biomed. 2017 May;143:113-120. doi: 10.1016/j.cmpb.2017.03.004. Epub 2017 Mar 6.

Abstract

BACKGROUND AND OBJECTIVE

We propose a nipple detection algorithm for use with digital breast tomosynthesis (DBT) images. DBT images have been developed to overcome the weaknesses of 2D mammograms for denser breasts by providing 3D breast images. The nipple location acts as an invaluable landmark in DBT images for aligning the right and left breasts and describing the relative location of any existing lesions.

METHODS

Nipples may be visible or invisible in a breast image, and therefore a nipple detection method must be able to detect the nipples for both cases. The detection method for visible nipples based on their shape is simple and highly efficient. However, it is difficult to detect invisible nipples because they do not have a prominent shape. Fibroglandular tissue in a breast is anatomically connected with the nipple. Thus, the nipple location can be detected by analyzing the location of such tissue. In this paper, we propose a method for detecting the location of both visible and invisible nipples using fibroglandular tissue and changes in the breast area.

RESULTS

Our algorithm was applied to 138 DBT images, and its nipple detection accuracy was evaluated based on the mean Euclidean distance. The results indicate that our proposed method achieves a mean Euclidean distance of 3.10±2.58mm.

CONCLUSIONS

The nipple location can be a very important piece of information in the process of a DBT image registration. This paper presents a method for the automatic nipple detection in a DBT image. The extracted nipple location plays an essential role in classifying any existing lesions and comparing both the right and left breasts. Thus, the proposed method can help with computer-aided detection for a more efficient DBT image analysis.

摘要

背景与目的

我们提出一种用于数字乳腺断层合成(DBT)图像的乳头检测算法。DBT图像旨在通过提供三维乳房图像来克服二维乳房X光片在检测致密乳房时的弱点。乳头位置在DBT图像中是一个非常重要的标志,可用于左右乳房的对齐以及描述任何现有病变的相对位置。

方法

在乳房图像中,乳头可能可见,也可能不可见,因此乳头检测方法必须能够检测这两种情况下的乳头。基于可见乳头形状的检测方法简单且高效。然而,检测不可见乳头却很困难,因为它们没有明显的形状。乳房中的纤维腺体组织在解剖学上与乳头相连。因此,可以通过分析这种组织的位置来检测乳头位置。在本文中,我们提出一种利用纤维腺体组织和乳房区域变化来检测可见和不可见乳头位置的方法。

结果

我们的算法应用于138幅DBT图像,并基于平均欧几里得距离评估其乳头检测精度。结果表明,我们提出的方法实现了平均欧几里得距离为3.10±2.58毫米。

结论

乳头位置在DBT图像配准过程中可能是非常重要的信息。本文提出了一种在DBT图像中自动检测乳头的方法。提取的乳头位置在对任何现有病变进行分类以及比较左右乳房方面起着至关重要的作用。因此,所提出的方法有助于计算机辅助检测,以实现更高效的DBT图像分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验