in-ADME Research, 1732 First Avenue #102, New York, NY 10128, USA.
Eur J Pharm Sci. 2017 Dec 15;110:2-18. doi: 10.1016/j.ejps.2017.03.049. Epub 2017 Apr 6.
A novel general computational approach is described to address many aspects of cocrystal (CC) solubility product (K) determination of drug substances. The CC analysis program, pDISOL-X, was developed and validated with published model systems of various acid-base combinations of active pharmaceutical ingredients (APIs) and coformers: (i) carbamazepine cocrystal systems with 4-aminobenzoic acid, cinnamic acid, saccharin, and salicylic acid, (ii) for indomethacin with saccharin, (iii) for nevirapine with maleic acid, saccharin, and salicylic acid, and (iv) for gabapentin with 3-hydroxybenzoic acid. In all systems but gabapentin, the coformer is much more soluble than the API. The model systems selected are those with available published dual concentration-pH data, one set for the API and one set for the coformer, generally measured at eutectic points (thermodynamically-stable three phases: solution, cocrystal, and crystalline API or coformer). The carbamazepine-cinnamic acid CC showed a substantial elevation in the API equilibrium concentration above pH5, consistent with the formation of a complex between carbamazepine and cinnamate anion. The analysis of the gabapentin:3-hydroxybenzoic acid 1:1 CC system indicated four zones of solid suspensions: coformer (pH<3.25), coformer and cocrystal eutectic (pH3.25-4.44), cocrystal (pH4.44-5.62), and API (pH>5.62). The general approach allows for testing of many possible equilibrium models, including those comprising drug-coformer complexation. The program calculates the ionic strength at each pH. From this, the equilibrium constants are adjusted for activity effects, based on the Stokes-Robinson hydration theory. The complete speciation analysis of the CC systems may provide useful insights into pH-sensitive dissolution effects that could potentially influence bioavailability.
描述了一种新颖的通用计算方法,用于解决药物物质共晶(CC)溶解度积(K)的许多方面。开发了 CC 分析程序 pDISOL-X,并使用各种酸碱组合的活性药物成分(API)和共晶形成剂的已发表模型系统进行了验证:(i)卡马西平与 4-氨基苯甲酸、肉桂酸、糖精和水杨酸的共晶系统,(ii) 用于吲哚美辛与糖精,(iii) 用于奈韦拉平与马来酸、糖精和水杨酸,以及(iv) 用于加巴喷丁与 3-羟基苯甲酸。在除加巴喷丁以外的所有系统中,共晶形成剂的溶解度都远高于 API。选择的模型系统是那些具有可用的已发表的双重浓度-pH 数据的系统,一套用于 API,一套用于共晶形成剂,通常在共晶点(热力学稳定的三相:溶液、共晶和结晶 API 或共晶形成剂)处测量。卡马西平-肉桂酸 CC 显示 API 平衡浓度在 pH5 以上显著升高,与卡马西平和肉桂酸盐阴离子之间形成复合物一致。对加巴喷丁:3-羟基苯甲酸 1:1 CC 系统的分析表明存在四个固体悬浮区:共晶形成剂(pH<3.25)、共晶形成剂和共晶共熔点(pH3.25-4.44)、共晶(pH4.44-5.62)和 API(pH>5.62)。该通用方法允许测试许多可能的平衡模型,包括包含药物-共晶形成剂络合的模型。该程序在每个 pH 下计算离子强度。由此,根据 Stokes-Robinson 水合理论,针对活度效应调整平衡常数。CC 系统的完整形态分析可能为 pH 敏感溶解效应提供有用的见解,这些效应可能会影响生物利用度。