Avdeef Alex
in-ADME Research, New York City, NY 10128, USA.
ADMET DMPK. 2025 Feb 26;13(1):2626. doi: 10.5599/admet.2626. eCollection 2025.
The solubility of weakly-ionizable drugs in pure water, S, is commonly measured. The pH-dependent properties of the saturated solutions can be surprisingly complex in subtle ways. This commentary examines the characteristics of such measurements through case studies of 32 free acids, bases, and ampholytes (including crocetin, glibenclamide, mellitic acid, quercetin, bedaquiline, brigatinib, imatinib, celecoxib, and lysine), using published water solubility data.
Usually, in such saturated solutions, the ionic strength, , is close to zero. When the pH is adjusted away from pH, the ionic strength increases, substantially in some cases ( > 10 M at pH 7.4 for mellitic acid and lysine). This change in ionic strength alters the activities of the species in solution. The corresponding equilibrium constants used to calculate the concentrations of these species must be adjusted accordingly. Here, the Stokes-Robinson hydration theory, slightly modified with Setschenow 'salting-out' constants to account for solvent interactions with unionized drugs, was used to estimate activity coefficients. The calculations were performed with the pDISOL-X program.
Given reliably-measured values of solubility in water ( ) and ionization constant (p ) of the drugs and assuming that the Henderson-Hasselbalch equation is valid, a method is described for (i) adjusting the measured values at ionic strength, ~ 0 M, to values expected at reference ionic strength, = 0.15 M (or at any other reasonable reference value), (ii) determining the water pH in saturated solutions of added neutral-form drugs; (iii) determining the intrinsic solubility, , both at and , and (iv) using analytic-continuation in the equilibrium mass action model to deduce the solubility values as a function of pH, harmonized to a selected . For highly soluble drugs, whose exceeds 0.15 M, the intrinsic solubility values appear to depend on the amount of excess solid added.
This commentary re-emphasizes that measured is not generally the same as . It is stressed that transforming measured drug solubility in pure water to an ionic strength level that is physiologically appropriate would better match the conditions found in biological media, potentially improving applications of solubility in pharmaceutical research and development.
通常会测定弱电离药物在纯水中的溶解度S。饱和溶液的pH依赖性特性可能会以微妙的方式呈现出惊人的复杂性。本评论通过对32种游离酸、碱和两性电解质(包括藏红花酸、格列本脲、苯六甲酸、槲皮素、贝达喹啉、布吉他滨、伊马替尼、塞来昔布和赖氨酸)的案例研究,利用已发表的水溶性数据来考察此类测量的特征。
通常,在这种饱和溶液中,离子强度I接近零。当pH值从pH*调整时,离子强度会增加,在某些情况下会大幅增加(苯六甲酸和赖氨酸在pH 7.4时I>10 M)。离子强度的这种变化会改变溶液中各物种的活度。用于计算这些物种浓度的相应平衡常数必须进行相应调整。在此,使用经Setschenow“盐析”常数稍加修改的斯托克斯 - 罗宾逊水合理论来估计活度系数。计算使用pDISOL - X程序进行。
在给定可靠测量的药物在水中的溶解度(S)和电离常数(pKa)值,并假设亨德森 - 哈塞尔巴尔赫方程有效的情况下,描述了一种方法,用于(i)将在离子强度I≈0 M时测量的S值调整为在参考离子强度I = 0.15 M(或任何其他合理参考值)时预期的值,(ii)确定添加中性形式药物的饱和溶液中的水pH值;(iii)确定在I = 0和I = 0.15 M时的固有溶解度S0,以及(iv)在平衡质量作用模型中使用解析延拓来推导溶解度值作为pH的函数,并与选定的I相协调。对于溶解度高的药物,其S超过0.15 M,固有溶解度值似乎取决于添加的过量固体的量。
本评论再次强调,测量的S通常与S0不同。强调将在纯水中测量的药物溶解度转换到生理上合适的离子强度水平将更好地匹配生物介质中的条件,这可能会改善溶解度在药物研发中的应用。