Suppr超能文献

一种利用外部知识进行网络恢复的经验贝叶斯方法。

An empirical Bayes approach to network recovery using external knowledge.

作者信息

Kpogbezan Gino B, van der Vaart Aad W, van Wieringen Wessel N, Leday Gwenaël G R, van de Wiel Mark A

机构信息

Department of Mathematics, University of Leiden, Niels Bohrweg 1, 2333, CA Leiden, The Netherlands.

Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV Amsterdam, The Netherlands.

出版信息

Biom J. 2017 Sep;59(5):932-947. doi: 10.1002/bimj.201600090. Epub 2017 Apr 10.

Abstract

Reconstruction of a high-dimensional network may benefit substantially from the inclusion of prior knowledge on the network topology. In the case of gene interaction networks such knowledge may come for instance from pathway repositories like KEGG, or be inferred from data of a pilot study. The Bayesian framework provides a natural means of including such prior knowledge. Based on a Bayesian Simultaneous Equation Model, we develop an appealing Empirical Bayes (EB) procedure that automatically assesses the agreement of the used prior knowledge with the data at hand. We use variational Bayes method for posterior densities approximation and compare its accuracy with that of Gibbs sampling strategy. Our method is computationally fast, and can outperform known competitors. In a simulation study, we show that accurate prior data can greatly improve the reconstruction of the network, but need not harm the reconstruction if wrong. We demonstrate the benefits of the method in an analysis of gene expression data from GEO. In particular, the edges of the recovered network have superior reproducibility (compared to that of competitors) over resampled versions of the data.

摘要

纳入网络拓扑的先验知识可能会极大地有利于高维网络的重建。就基因相互作用网络而言,此类知识可能例如来自像KEGG这样的通路知识库,或者从初步研究的数据中推断得出。贝叶斯框架提供了纳入此类先验知识的自然方式。基于贝叶斯联立方程模型,我们开发了一种引人注目的经验贝叶斯(EB)程序,该程序能自动评估所使用的先验知识与手头数据的一致性。我们使用变分贝叶斯方法来近似后验密度,并将其准确性与吉布斯采样策略的准确性进行比较。我们的方法计算速度快,并且可以胜过已知的竞争对手。在一项模拟研究中,我们表明准确的先验数据可以极大地改善网络的重建,但如果数据错误也不一定会损害重建。我们在对来自GEO的基因表达数据的分析中展示了该方法的优势。特别是,与数据的重采样版本相比,恢复网络的边具有更高的重现性(与竞争对手相比)。

相似文献

1
An empirical Bayes approach to network recovery using external knowledge.
Biom J. 2017 Sep;59(5):932-947. doi: 10.1002/bimj.201600090. Epub 2017 Apr 10.
2
Comparing the reconstruction of regulatory pathways with distinct Bayesian networks inference methods.
BMC Genomics. 2012;13 Suppl 5(Suppl 5):S2. doi: 10.1186/1471-2164-13-S5-S2. Epub 2012 Oct 19.
3
Adaptive Use of Co-Data Through Empirical Bayes for Bayesian Additive Regression Trees.
Stat Med. 2025 Feb 28;44(5):e70004. doi: 10.1002/sim.70004.
5
An integrative network inference approach to predict mechanisms of cancer chemoresistance.
Integr Biol (Camb). 2013 Mar;5(3):458-73. doi: 10.1039/c2ib20205k.
6
Boosting probabilistic graphical model inference by incorporating prior knowledge from multiple sources.
PLoS One. 2013 Jun 24;8(6):e67410. doi: 10.1371/journal.pone.0067410. Print 2013.
7
An automatic adaptive method to combine summary statistics in approximate Bayesian computation.
PLoS One. 2020 Aug 6;15(8):e0236954. doi: 10.1371/journal.pone.0236954. eCollection 2020.
9
Adaptively leveraging external data with robust meta-analytical-predictive prior using empirical Bayes.
Pharm Stat. 2023 Sep-Oct;22(5):846-860. doi: 10.1002/pst.2315. Epub 2023 May 23.
10
A tolerance interval approach for assessment of agreement with left censored data.
J Biopharm Stat. 2007;17(4):583-94. doi: 10.1080/10543400701329430.

引用本文的文献

1
Identifying large-scale interaction atlases using probabilistic graphs and external knowledge.
J Clin Transl Sci. 2022 Feb 11;6(1):e27. doi: 10.1017/cts.2022.18. eCollection 2022.
2
Drug sensitivity prediction with normal inverse Gaussian shrinkage informed by external data.
Biom J. 2021 Feb;63(2):289-304. doi: 10.1002/bimj.201900371. Epub 2020 Jul 23.
3
F-MAP: A Bayesian approach to infer the gene regulatory network using external hints.
PLoS One. 2017 Sep 22;12(9):e0184795. doi: 10.1371/journal.pone.0184795. eCollection 2017.

本文引用的文献

1
Gene Network Reconstruction using Global-Local Shrinkage Priors.
Ann Appl Stat. 2017 Mar;11(1):41-68. doi: 10.1214/16-aoas990.
2
Selection and estimation for mixed graphical models.
Biometrika. 2015 Mar;102(1):47-64. doi: 10.1093/biomet/asu051. Epub 2014 Dec 24.
4
Transcriptomic Heterogeneity in Cancer as a Consequence of Dysregulation of the Gene-Gene Interaction Network.
Bull Math Biol. 2015 Sep;77(9):1768-86. doi: 10.1007/s11538-015-0103-7. Epub 2015 Sep 16.
5
Bayesian network prior: network analysis of biological data using external knowledge.
Bioinformatics. 2014 Mar 15;30(6):860-7. doi: 10.1093/bioinformatics/btt643. Epub 2013 Nov 9.
6
A Local Poisson Graphical Model for inferring networks from sequencing data.
IEEE Trans Nanobioscience. 2013 Sep;12(3):189-98. doi: 10.1109/TNB.2013.2263838. Epub 2013 Aug 15.
7
Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors.
Biostatistics. 2013 Jan;14(1):113-28. doi: 10.1093/biostatistics/kxs031. Epub 2012 Sep 17.
8
Literature-based priors for gene regulatory networks.
Bioinformatics. 2009 Jul 15;25(14):1768-74. doi: 10.1093/bioinformatics/btp277. Epub 2009 Apr 23.
10
Network inference using informative priors.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14313-8. doi: 10.1073/pnas.0802272105. Epub 2008 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验