Suppr超能文献

贝叶斯网络先验:使用外部知识进行生物数据的网络分析。

Bayesian network prior: network analysis of biological data using external knowledge.

机构信息

Bogazici University, Institute of Biomedical Engineering, Kandilli Campus, 34684, Cengelkoy - Istanbul, TUBITAK-BILGEM, Informatics and Information Security Research Center, 41470, Gebze-Kocaeli and Istanbul Bilgi University, Department of Genetics and Bioengineering, 34060, Eyup - Istanbul, Turkey.

出版信息

Bioinformatics. 2014 Mar 15;30(6):860-7. doi: 10.1093/bioinformatics/btt643. Epub 2013 Nov 9.

Abstract

MOTIVATION

Reverse engineering GI networks from experimental data is a challenging task due to the complex nature of the networks and the noise inherent in the data. One way to overcome these hurdles would be incorporating the vast amounts of external biological knowledge when building interaction networks. We propose a framework where GI networks are learned from experimental data using Bayesian networks (BNs) and the incorporation of external knowledge is also done via a BN that we call Bayesian Network Prior (BNP). BNP depicts the relation between various evidence types that contribute to the event 'gene interaction' and is used to calculate the probability of a candidate graph (G) in the structure learning process.

RESULTS

Our simulation results on synthetic, simulated and real biological data show that the proposed approach can identify the underlying interaction network with high accuracy even when the prior information is distorted and outperforms existing methods.

AVAILABILITY

Accompanying BNP software package is freely available for academic use at http://bioe.bilgi.edu.tr/BNP.

CONTACT

hasan.otu@bilgi.edu.tr

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

由于网络的复杂性和数据固有的噪声,从实验数据中反向工程 GI 网络是一项具有挑战性的任务。克服这些障碍的一种方法是在构建交互网络时结合大量外部生物知识。我们提出了一个使用贝叶斯网络 (BN) 从实验数据中学习 GI 网络的框架,并且还通过我们称之为贝叶斯网络先验 (BNP) 的 BN 来进行外部知识的整合。BNP 描述了导致事件“基因相互作用”的各种证据类型之间的关系,并用于在结构学习过程中计算候选图 (G) 的概率。

结果

我们在合成、模拟和真实生物数据上的模拟结果表明,即使先验信息失真,所提出的方法也可以高精度地识别潜在的交互网络,并优于现有方法。

可用性

BNP 软件包可在 http://bioe.bilgi.edu.tr/BNP 上免费供学术使用。

联系方式

hasan.otu@bilgi.edu.tr

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c9/3957076/d8271e28b51e/btt643f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验