Bogazici University, Institute of Biomedical Engineering, Kandilli Campus, 34684, Cengelkoy - Istanbul, TUBITAK-BILGEM, Informatics and Information Security Research Center, 41470, Gebze-Kocaeli and Istanbul Bilgi University, Department of Genetics and Bioengineering, 34060, Eyup - Istanbul, Turkey.
Bioinformatics. 2014 Mar 15;30(6):860-7. doi: 10.1093/bioinformatics/btt643. Epub 2013 Nov 9.
Reverse engineering GI networks from experimental data is a challenging task due to the complex nature of the networks and the noise inherent in the data. One way to overcome these hurdles would be incorporating the vast amounts of external biological knowledge when building interaction networks. We propose a framework where GI networks are learned from experimental data using Bayesian networks (BNs) and the incorporation of external knowledge is also done via a BN that we call Bayesian Network Prior (BNP). BNP depicts the relation between various evidence types that contribute to the event 'gene interaction' and is used to calculate the probability of a candidate graph (G) in the structure learning process.
Our simulation results on synthetic, simulated and real biological data show that the proposed approach can identify the underlying interaction network with high accuracy even when the prior information is distorted and outperforms existing methods.
Accompanying BNP software package is freely available for academic use at http://bioe.bilgi.edu.tr/BNP.
Supplementary data are available at Bioinformatics online.
由于网络的复杂性和数据固有的噪声,从实验数据中反向工程 GI 网络是一项具有挑战性的任务。克服这些障碍的一种方法是在构建交互网络时结合大量外部生物知识。我们提出了一个使用贝叶斯网络 (BN) 从实验数据中学习 GI 网络的框架,并且还通过我们称之为贝叶斯网络先验 (BNP) 的 BN 来进行外部知识的整合。BNP 描述了导致事件“基因相互作用”的各种证据类型之间的关系,并用于在结构学习过程中计算候选图 (G) 的概率。
我们在合成、模拟和真实生物数据上的模拟结果表明,即使先验信息失真,所提出的方法也可以高精度地识别潜在的交互网络,并优于现有方法。
BNP 软件包可在 http://bioe.bilgi.edu.tr/BNP 上免费供学术使用。
补充数据可在 Bioinformatics 在线获得。