Seenivasan Rajesh, Kolodziej Charles, Karunakaran Chandran, Burda Clemens
Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Chem Rec. 2017 Sep;17(9):886-901. doi: 10.1002/tcr.201600143. Epub 2017 Apr 10.
Over the past several decades, nanotechnology has contributed to the progress of biomedicine, biomarker discovery, and the development of highly sensitive electroanalytical / electrochemical biosensors for in vitro and in vivo monitoring, and quantification of oxidative and nitrosative stress markers like reactive oxygen species (ROS) and reactive nitrogen species (RNS). A major source of ROS and RNS is oxidative stress in cells, which can cause many human diseases, including cancer. Therefore, the detection of local concentrations of ROS (e. g. superoxide anion radical; O ) and RNS (e. g. nitric oxide radical; NO and its metabolites) released from biological systems is increasingly important and needs a sophisticated detection strategy to monitor ROS and RNS in vitro and in vivo. In this review, we discuss the nanomaterials-based ROS and RNS biosensors utilizing electrochemical techniques with emphasis on their biomedical applications.
在过去几十年里,纳米技术推动了生物医学、生物标志物发现以及用于体外和体内监测及定量活性氧(ROS)和活性氮(RNS)等氧化应激和亚硝化应激标志物的高灵敏度电分析/电化学生物传感器的发展。ROS和RNS的一个主要来源是细胞内的氧化应激,它可导致包括癌症在内的许多人类疾病。因此,检测生物系统释放的ROS(如超氧阴离子自由基;O )和RNS(如一氧化氮自由基;NO及其代谢产物)的局部浓度变得越来越重要,并且需要一种复杂的检测策略来在体外和体内监测ROS和RNS。在本综述中,我们讨论了利用电化学技术的基于纳米材料的ROS和RNS生物传感器,重点介绍了它们在生物医学中的应用。