Cañas Rafael A, Yesbergenova-Cuny Zhazira, Simons Margaret, Chardon Fabien, Armengaud Patrick, Quilleré Isabelle, Cukier Caroline, Gibon Yves, Limami Anis M, Nicolas Stéphane, Brulé Lenaïg, Lea Peter J, Maranas Costas D, Hirel Bertrand
Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France.
Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.
Plant Cell. 2017 May;29(5):919-943. doi: 10.1105/tpc.16.00613. Epub 2017 Apr 10.
A combined metabolomic, biochemical, fluxomic, and metabolic modeling approach was developed using 19 genetically distant maize () lines from Europe and America. Considerable differences were detected between the lines when leaf metabolic profiles and activities of the main enzymes involved in primary metabolism were compared. During grain filling, the leaf metabolic composition appeared to be a reliable marker, allowing a classification matching the genetic diversity of the lines. During the same period, there was a significant correlation between the genetic distance of the lines and the activities of enzymes involved in carbon metabolism, notably glycolysis. Although large differences were observed in terms of leaf metabolic fluxes, these variations were not tightly linked to the genome structure of the lines. Both correlation studies and metabolic network analyses allowed the description of a maize ideotype with a high grain yield potential. Such an ideotype is characterized by low accumulation of soluble amino acids and carbohydrates in the leaves and high activity of enzymes involved in the C photosynthetic pathway and in the biosynthesis of amino acids derived from glutamate. Chlorogenates appear to be important markers that can be used to select for maize lines that produce larger kernels.
利用来自欧洲和美洲的19个遗传距离较远的玉米品系,开发了一种结合代谢组学、生化、通量组学和代谢建模的方法。比较叶片代谢谱和参与初级代谢的主要酶的活性时,在这些品系之间检测到了显著差异。在籽粒灌浆期间,叶片代谢组成似乎是一个可靠的标记,能够实现与品系遗传多样性相匹配的分类。在同一时期,品系的遗传距离与参与碳代谢(尤其是糖酵解)的酶的活性之间存在显著相关性。尽管在叶片代谢通量方面观察到了很大差异,但这些变化与品系的基因组结构没有紧密联系。相关性研究和代谢网络分析都有助于描述具有高产潜力的玉米理想型。这种理想型的特征是叶片中可溶性氨基酸和碳水化合物的积累量低,以及参与C光合途径和源自谷氨酸的氨基酸生物合成的酶的活性高。绿原酸盐似乎是重要的标记,可用于选择产生更大籽粒的玉米品系。