Suppr超能文献

玉米叶片 C4 发育和分化的结构和代谢转变通过显微镜和定量蛋白质组学定义。

Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.

机构信息

Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA.

出版信息

Plant Cell. 2010 Nov;22(11):3509-42. doi: 10.1105/tpc.110.079764. Epub 2010 Nov 16.

Abstract

C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.

摘要

C(4) 类植物,如玉米(Zea mays),通过结合生化和结构适应来提高光合作用效率。C(4) 光合作用沿着叶片的发育轴建立,从位于叶舌上方的未分化叶基部延伸到尖端的高度特化的叶肉细胞(MCs)和维管束鞘细胞(BSCs)。为了阐明玉米叶片发育和 C(4) 分化的动力学,并从系统水平理解玉米叶片的形成,使用大规模质谱法测定了叶片和分离的 BSCs 及其沿发育梯度的维管束的蛋白质组的积累曲线。这通过对结构特征(例如,Kranz 解剖结构、胞间连丝、细胞壁和细胞器)的广泛定性和定量显微镜分析得到了补充。鉴定出超过 4300 种蛋白质并进行了功能注释。发育蛋白积累曲线和层次聚类分析确定了细胞器生物发生、细胞结构形成、代谢和共表达模式的动力学。观察到两个主要的表达簇,每个簇又分为亚簇,这表明少数几个发育调控网络沿着叶片梯度协调蛋白的积累。与 BSC 和 MC 标记的共表达为进一步分析 C(4) 特化提供了强有力的候选者,特别是转运蛋白和生物发生因子。基于综合信息,我们描述了五个发育转变,为进一步分析提供了概念和实用模板。通过植物蛋白质组数据库提供了在线蛋白质表达查看器。

相似文献

2
Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development.
Plant Cell. 2013 Aug;25(8):2798-812. doi: 10.1105/tpc.113.112227. Epub 2013 Aug 9.
3
Scarecrow plays a role in establishing Kranz anatomy in maize leaves.
Plant Cell Physiol. 2012 Dec;53(12):2030-7. doi: 10.1093/pcp/pcs147. Epub 2012 Nov 4.
5
Structure and enzyme expression in photosynthetic organs of the atypical C4 grass Arundinella hirta.
Planta. 2006 May;223(6):1243-55. doi: 10.1007/s00425-005-0172-1. Epub 2006 Feb 1.
6
Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells.
Mol Cell Proteomics. 2008 Sep;7(9):1609-38. doi: 10.1074/mcp.M800016-MCP200. Epub 2008 May 2.
10
Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics.
Plant Cell. 2005 Nov;17(11):3111-40. doi: 10.1105/tpc.105.035519. Epub 2005 Oct 21.

引用本文的文献

1
C4 plants respond to phosphate starvation differently than C3 plants.
Plant Physiol. 2025 Aug 4;198(4). doi: 10.1093/plphys/kiaf327.
2
In vivo two-photon FLIM resolves photosynthetic properties of maize bundle sheath cells.
Photosynth Res. 2025 Jan 21;163(1):11. doi: 10.1007/s11120-024-01135-0.
3
Comparative PSII photochemistry of quinoa and maize under mild to severe drought stress.
Photosynthetica. 2022 May 27;60(3):362-371. doi: 10.32615/ps.2022.022. eCollection 2022.
4
Novel resources to investigate leaf plasmodesmata formation in C and C monocots.
Plant J. 2024 Dec;120(5):2207-2225. doi: 10.1111/tpj.17113. Epub 2024 Nov 4.
7
Plastid retrograde signaling: A developmental perspective.
Plant Cell. 2024 Oct 3;36(10):3903-3913. doi: 10.1093/plcell/koae094.
8
C4 Phosphoenolpyruvate Carboxylase: Evolution and transcriptional regulation.
Genet Mol Biol. 2024 Mar 22;46(3 Suppl 1):e20230190. doi: 10.1590/1678-4685-GMB-2023-0190. eCollection 2024.
9
Integrating multiple regulations on enzyme activity: the case of phosphopyruvate carboxykinases.
AoB Plants. 2023 Aug 2;15(4):plad053. doi: 10.1093/aobpla/plad053. eCollection 2023 Jul.
10
Comparative transcriptomics reveals the role of altered energy metabolism in the establishment of single-cell C photosynthesis in .
Front Plant Sci. 2023 Jul 5;14:1202521. doi: 10.3389/fpls.2023.1202521. eCollection 2023.

本文引用的文献

1
The evolution of C photosynthesis.
New Phytol. 2004 Feb;161(2):341-370. doi: 10.1111/j.1469-8137.2004.00974.x.
2
LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis.
Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16721-5. doi: 10.1073/pnas.1004699107. Epub 2010 Sep 7.
3
New insights into the types and function of proteases in plastids.
Int Rev Cell Mol Biol. 2010;280:185-218. doi: 10.1016/S1937-6448(10)80004-8. Epub 2010 Mar 18.
4
Control of tissue and organ growth in plants.
Curr Top Dev Biol. 2010;91:185-220. doi: 10.1016/S0070-2153(10)91007-7.
6
C4 rice - an ideal arena for systems biology research.
J Integr Plant Biol. 2010 Aug;52(8):762-70. doi: 10.1111/j.1744-7909.2010.00983.x.
7
Arabidopsis chloroplast FtsH, var2 and suppressors of var2 leaf variegation: a review.
J Integr Plant Biol. 2010 Aug;52(8):750-61. doi: 10.1111/j.1744-7909.2010.00980.x.
8
Thiamine in plants: aspects of its metabolism and functions.
Phytochemistry. 2010 Oct;71(14-15):1615-24. doi: 10.1016/j.phytochem.2010.06.022. Epub 2010 Jul 23.
9
Proteogenomics to discover the full coding content of genomes: a computational perspective.
J Proteomics. 2010 Oct 10;73(11):2124-35. doi: 10.1016/j.jprot.2010.06.007. Epub 2010 Jul 8.
10
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Plant Physiol. 2011 Jan;155(1):142-56. doi: 10.1104/pp.110.159442. Epub 2010 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验