Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
Soft Matter. 2017 May 3;13(17):3174-3181. doi: 10.1039/c7sm00395a.
We develop a theoretical description of the critical zipping dynamics of a self-folding polymer. We use tension propagation theory and the formalism of the generalized Langevin equation applied to a polymer that contains two complementary parts which can bind to each other. At the critical temperature, the (un)zipping is unbiased and the two strands open and close as a zipper. The number of broken base pairs n(t) displays a subdiffusive motion characterized by a variance growing as 〈Δn(t)〉 ∼ t with α < 1 at long times. Our theory provides an estimate of both the asymptotic anomalous exponent α and of the subleading correction term, which are both in excellent agreement with numerical simulations. The results indicate that the tension propagation theory captures the relevant features of the dynamics and shed some new insights on related polymer problems characterized by anomalous dynamical behavior.
我们提出了一个自折叠聚合物临界拉链动力学的理论描述。我们使用张力传播理论和广义朗之万方程的形式,应用于含有两个互补部分的聚合物,这两个部分可以相互结合。在临界温度下,(非)拉链是无偏的,两条链像拉链一样打开和关闭。断裂碱基对的数量 n(t) 呈现出亚扩散运动,其方差随时间增长为〈Δn(t)〉∼t,在长时间内 α < 1。我们的理论提供了对渐近异常指数 α 和次主导修正项的估计,这两者都与数值模拟非常吻合。结果表明,张力传播理论捕捉到了动力学的相关特征,并为具有异常动力学行为的相关聚合物问题提供了一些新的见解。