Suppr超能文献

基于荧光寿命的吲哚菁绿标记肿瘤的对比增强。

Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumors.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States.

出版信息

J Biomed Opt. 2017 Apr 1;22(4):40501. doi: 10.1117/1.JBO.22.4.040501.

Abstract

Although the development of tumor-targeted fluorescent probes is a major area of investigation, it will be several years before these probes are realized for clinical use. Here, we report an approach that employs indocyanine-green (ICG), a clinically approved, nontargeted dye, in conjunction with fluorescence lifetime (FLT) detection to provide high accuracy for tumor-tissue identification in mouse models of subcutaneous human breast and brain tmors. The improved performance relies on the distinct FLTs of ICG within tumors versus tissue autofluorescence and is further aided by the well-known enhanced permeability and retention of ICG in tumors and the clearance of ICG from normal tissue several hours after intravenous injection. We demonstrate that FLT detection can provide more than 98% sensitivity and specificity, and a 10-fold reduction in error rates compared to intensity-based detection. Our studies suggest the significant potential of FLT-contrast for accurate tumor-tissue identification using ICG and other targeted probes under development, both for intraoperative imaging and for ex-vivo margin assessment of surgical specimens.

摘要

尽管肿瘤靶向荧光探针的开发是一个主要的研究领域,但这些探针要实现临床应用还需要几年的时间。在这里,我们报告了一种方法,该方法结合使用临床批准的非靶向染料吲哚菁绿(ICG)和荧光寿命(FLT)检测,以提供在皮下人乳腺癌和脑肿瘤小鼠模型中进行肿瘤组织识别的高度准确性。这种改进的性能依赖于肿瘤内与组织自发荧光之间 ICG 的独特 FLT,并且进一步得益于 ICG 在肿瘤中的通透性和保留增强以及静脉注射后数小时内 ICG 从正常组织中的清除。我们证明,与基于强度的检测相比,FLT 检测可提供超过 98%的灵敏度和特异性,并将错误率降低 10 倍。我们的研究表明,FLT 对比使用 ICG 和其他正在开发的靶向探针进行准确的肿瘤组织识别具有重要的潜力,无论是用于术中成像还是用于手术标本的离体边缘评估。

相似文献

1
Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumors.
J Biomed Opt. 2017 Apr 1;22(4):40501. doi: 10.1117/1.JBO.22.4.040501.
2
Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging.
Int J Cancer. 2016 Aug 1;139(3):673-82. doi: 10.1002/ijc.30102. Epub 2016 Apr 4.
3
Fluorescence Lifetime-Based Tumor Contrast Enhancement Using an EGFR Antibody-Labeled Near-Infrared Fluorophore.
Clin Cancer Res. 2019 Nov 15;25(22):6653-6661. doi: 10.1158/1078-0432.CCR-19-1686. Epub 2019 Sep 3.
4
Structurally symmetric near-infrared fluorophore IRDye78-protein complex enables multimodal cancer imaging.
Theranostics. 2021 Jan 1;11(6):2534-2549. doi: 10.7150/thno.54928. eCollection 2021.
7
Intraoperative Near-Infrared Optical Contrast Can Localize Brain Metastases.
World Neurosurg. 2017 Oct;106:120-130. doi: 10.1016/j.wneu.2017.06.128. Epub 2017 Jun 30.
8
Biocompatible and Water-Soluble Shortwave-Infrared (SWIR)-Emitting Cyanine-Based Fluorescent Probes for In Vivo Multiplexed Molecular Imaging.
ACS Appl Mater Interfaces. 2024 Apr 10;16(14):17253-17266. doi: 10.1021/acsami.4c01000. Epub 2024 Apr 1.
9
Molecularly targeted protease-activated probes for visualization of glioblastoma: a comparison with 5-ALA.
J Neurosurg. 2024 Mar 29;141(3):602-613. doi: 10.3171/2024.1.JNS231137. Print 2024 Sep 1.
10
Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.
JACC Cardiovasc Imaging. 2016 Sep;9(9):1087-1095. doi: 10.1016/j.jcmg.2016.01.034. Epub 2016 Aug 17.

引用本文的文献

2
High Spatiotemporal Near-Infrared II Fluorescence Lifetime Imaging for Quantitative Detection of Clinical Tumor Margins.
Adv Sci (Weinh). 2025 Feb;12(5):e2411272. doi: 10.1002/advs.202411272. Epub 2024 Dec 9.
3
Fluorescence Imaging Using Deep-Red Indocyanine Blue, a Complementary Partner for Near-Infrared Indocyanine Green.
Chem Biomed Imaging. 2024 May 2;2(5):384-397. doi: 10.1021/cbmi.4c00008. eCollection 2024 May 27.
5
Intraoperative molecular imaging: 3rd biennial clinical trials update.
J Biomed Opt. 2023 May;28(5):050901. doi: 10.1117/1.JBO.28.5.050901. Epub 2023 May 13.
6
Design and characterization of a time-domain optical tomography platform for mesoscopic lifetime imaging.
Biomed Opt Express. 2022 Aug 10;13(9):4637-4651. doi: 10.1364/BOE.460216. eCollection 2022 Sep 1.
7
Comparison of fluorescence lifetime and multispectral imaging for quantitative multiplexing in biological tissue.
Biomed Opt Express. 2022 Jun 9;13(7):3854-3868. doi: 10.1364/BOE.459935. eCollection 2022 Jul 1.
8
Multimodal microscopy for the simultaneous visualization of five different imaging modalities using a single light source.
Biomed Opt Express. 2021 Aug 9;12(9):5452-5469. doi: 10.1364/BOE.430677. eCollection 2021 Sep 1.
9
Real-time cancer diagnosis of breast cancer using fluorescence lifetime endoscopy based on the pH.
Sci Rep. 2021 Aug 19;11(1):16864. doi: 10.1038/s41598-021-96531-0.
10
Fluorescence Lifetime-Based Tumor Contrast Enhancement Using an EGFR Antibody-Labeled Near-Infrared Fluorophore.
Clin Cancer Res. 2019 Nov 15;25(22):6653-6661. doi: 10.1158/1078-0432.CCR-19-1686. Epub 2019 Sep 3.

本文引用的文献

1
Beyond the margins: real-time detection of cancer using targeted fluorophores.
Nat Rev Clin Oncol. 2017 Jun;14(6):347-364. doi: 10.1038/nrclinonc.2016.212. Epub 2017 Jan 17.
3
Compact solid-state CMOS single-photon detector array for in vivo NIR fluorescence lifetime oncology measurements.
Biomed Opt Express. 2016 Apr 11;7(5):1797-814. doi: 10.1364/BOE.7.001797. eCollection 2016 May 1.
6
In vivo tomographic imaging of deep-seated cancer using fluorescence lifetime contrast.
Cancer Res. 2015 Apr 1;75(7):1236-43. doi: 10.1158/0008-5472.CAN-14-3001. Epub 2015 Feb 10.
7
Preclinical whole body time domain fluorescence lifetime multiplexing of fluorescent proteins.
J Biomed Opt. 2014 Apr;19(4):046005. doi: 10.1117/1.JBO.19.4.046005.
9
Image-guided cancer surgery using near-infrared fluorescence.
Nat Rev Clin Oncol. 2013 Sep;10(9):507-18. doi: 10.1038/nrclinonc.2013.123. Epub 2013 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验