Suppr超能文献

临床前荧光蛋白的全身时域荧光寿命多重检测。

Preclinical whole body time domain fluorescence lifetime multiplexing of fluorescent proteins.

机构信息

Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 13 Street, Charlestown, Massachusetts 02129.

出版信息

J Biomed Opt. 2014 Apr;19(4):046005. doi: 10.1117/1.JBO.19.4.046005.

Abstract

The application of time domain (TD) fluorescence lifetime multiplexing for the detection of fluorescent proteins (FPs) in whole animals, in the presence of a strong background tissue autofluorescence and excitation light leakage is discussed. Tissue autofluorescence (AF) exhibits a nonexponential temporal response, distinct from the mono-exponential decay of FPs. This allows a direct separation of FP fluorescence from AF using a dual basis function approach. We establish the detection limits of this approach using in vitro and in vivo measurements. We also demonstrate, using an experimental model of lymph node metastasis, that FP-AF lifetime multiplexing provides a greater than 30-fold improvement in contrast-to-background ratio compared with continuous wave data. In addition, we show that TD detection can simultaneously discriminate between up to three red shifted FPs placed under the skin of a nude mouse based on their distinct fluorescence lifetimes.

摘要

本文讨论了在强背景组织自发荧光和激发光泄漏存在的情况下,利用时域(TD)荧光寿命多重检测技术检测整个动物体内的荧光蛋白(FPs)。组织自发荧光(AF)表现出非指数时间响应,与 FPs 的单指数衰减明显不同。这允许使用双基函数方法直接从 AF 中分离 FP 荧光。我们使用体外和体内测量来确定这种方法的检测极限。我们还使用淋巴结转移的实验模型证明,与连续波数据相比,FP-AF 寿命多重检测可将对比背景比提高 30 倍以上。此外,我们还表明,TD 检测可以根据不同的荧光寿命,同时区分放置在裸鼠皮肤下的多达三种红移 FPs。

相似文献

1
Preclinical whole body time domain fluorescence lifetime multiplexing of fluorescent proteins.
J Biomed Opt. 2014 Apr;19(4):046005. doi: 10.1117/1.JBO.19.4.046005.
2
Feasibility of in vivo imaging of fluorescent proteins using lifetime contrast.
Opt Lett. 2009 Jul 1;34(13):2066-8. doi: 10.1364/ol.34.002066.
3
Lifetime-based tomographic multiplexing.
J Biomed Opt. 2010 Jul-Aug;15(4):046011. doi: 10.1117/1.3469797.
4
Whole-body, real-time preclinical imaging of quantum dot fluorescence with time-gated detection.
J Biomed Opt. 2009 Nov-Dec;14(6):060504. doi: 10.1117/1.3269675.
5
Near-infrared fluorescent protein iRFP720 is optimal for in vivo fluorescence imaging of rabies virus infection.
J Gen Virol. 2017 Nov;98(11):2689-2698. doi: 10.1099/jgv.0.000950. Epub 2017 Oct 17.
6
Fluorescence Lifetime Imaging of Cancer In Vivo.
Methods Mol Biol. 2016;1444:55-66. doi: 10.1007/978-1-4939-3721-9_6.
7
FUCCI-Red: a single-color cell cycle indicator for fluorescence lifetime imaging.
Cell Mol Life Sci. 2021 Apr;78(7):3467-3476. doi: 10.1007/s00018-020-03712-7. Epub 2021 Feb 8.
9
Lifetime imaging of FRET between red fluorescent proteins.
J Biophotonics. 2010 Dec;3(12):774-83. doi: 10.1002/jbio.201000065. Epub 2010 Oct 5.
10
In vivo tomographic imaging of deep-seated cancer using fluorescence lifetime contrast.
Cancer Res. 2015 Apr 1;75(7):1236-43. doi: 10.1158/0008-5472.CAN-14-3001. Epub 2015 Feb 10.

引用本文的文献

3
The promise and peril of comparing fluorescence lifetime in biology revealed by simulations.
bioRxiv. 2025 Jun 6:2023.12.20.572686. doi: 10.1101/2023.12.20.572686.
4
Comparison of fluorescence lifetime and multispectral imaging for quantitative multiplexing in biological tissue.
Biomed Opt Express. 2022 Jun 9;13(7):3854-3868. doi: 10.1364/BOE.459935. eCollection 2022 Jul 1.
5
In Vivo Biosensing Using Resonance Energy Transfer.
Biosensors (Basel). 2019 Jun 3;9(2):76. doi: 10.3390/bios9020076.
6
Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumors.
J Biomed Opt. 2017 Apr 1;22(4):40501. doi: 10.1117/1.JBO.22.4.040501.
7
Multiplexed fluorescence mediated tomography with temporal and spectral data.
J Biomed Opt. 2016 Oct 1;21(10):105001. doi: 10.1117/1.JBO.21.10.105001.
8
FLIM-FRET for Cancer Applications.
Curr Mol Imaging. 2014;3(2):144-161. doi: 10.2174/2211555203666141117221111.
9
In vivo tomographic imaging of deep-seated cancer using fluorescence lifetime contrast.
Cancer Res. 2015 Apr 1;75(7):1236-43. doi: 10.1158/0008-5472.CAN-14-3001. Epub 2015 Feb 10.

本文引用的文献

1
Tomographic lifetime imaging using combined early- and late-arriving photons.
Opt Lett. 2014 Mar 1;39(5):1165-8. doi: 10.1364/OL.39.001165.
3
Nitroreductase, a near-infrared reporter platform for in vivo time-domain optical imaging of metastatic cancer.
Cancer Res. 2013 Feb 15;73(4):1276-86. doi: 10.1158/0008-5472.CAN-12-2649. Epub 2012 Dec 10.
4
In vivo tomographic imaging of red-shifted fluorescent proteins.
Biomed Opt Express. 2011 Mar 16;2(4):887-900. doi: 10.1364/BOE.2.000887.
6
Lifetime-based tomographic multiplexing.
J Biomed Opt. 2010 Jul-Aug;15(4):046011. doi: 10.1117/1.3469797.
7
Fluorescence lifetime measurements and biological imaging.
Chem Rev. 2010 May 12;110(5):2641-84. doi: 10.1021/cr900343z.
8
Feasibility of in vivo imaging of fluorescent proteins using lifetime contrast.
Opt Lett. 2009 Jul 1;34(13):2066-8. doi: 10.1364/ol.34.002066.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验