Askie Lisa M, Darlow Brian A, Davis Peter G, Finer Neil, Stenson Ben, Vento Maximo, Whyte Robin
NHMRC Clinical Trials Centre, University of Sydney, Locked Bag 77, Camperdown, NSW, Australia, 2050.
Department of Paediatrics, University of Otago, Christchurch, New Zealand.
Cochrane Database Syst Rev. 2017 Apr 11;4(4):CD011190. doi: 10.1002/14651858.CD011190.pub2.
The use of supplemental oxygen in the care of extremely preterm infants has been common practice since the 1940s. Despite this, there is little agreement regarding which oxygen saturation (SpO₂) ranges to target to maximise short- or long-term growth and development, while minimising harms. There are two opposing concerns. Lower oxygen levels (targeting SpO₂ at 90% or less) may impair neurodevelopment or result in death. Higher oxygen levels (targeting SpO₂ greater than 90%) may increase severe retinopathy of prematurity or chronic lung disease.The use of pulse oximetry to non-invasively assess neonatal SpO₂ levels has been widespread since the 1990s. Until recently there were no randomised controlled trials (RCTs) that had assessed whether it is better to target higher or lower oxygen saturation levels in extremely preterm infants, from birth or soon thereafter. As a result, there is significant international practice variation and uncertainty remains as to the most appropriate range to target oxygen saturation levels in preterm and low birth weight infants.
We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 4), MEDLINE via PubMed (1966 to 11 April 2016), Embase (1980 to 11 April 2016) and CINAHL (1982 to 11 April 2016). We also searched clinical trials databases, conference proceedings and the reference lists of retrieved articles for randomised controlled trials.
Randomised controlled trials that enrolled babies born at less than 28 weeks' gestation, at birth or soon thereafter, and targeted SpO₂ ranges of either 90% or below or above 90% via pulse oximetry, with the intention of maintaining such targets for at least the first two weeks of life.
We used the standard methods of Cochrane Neonatal to extract data from the published reports of the included studies. We sought some additional aggregate data from the original investigators in order to align the definitions of two key outcomes. We conducted the meta-analyses with Review Manager 5 software, using the Mantel-Haenszel method for estimates of typical risk ratio (RR) and risk difference (RD) and a fixed-effect model. We assessed the included studies using the Cochrane 'Risk of bias' and GRADE criteria in order to establish the quality of the evidence. We investigated heterogeneity of effects via pre-specified subgroup and sensitivity analyses.
Five trials, which together enrolled 4965 infants, were eligible for inclusion. The investigators of these five trials had prospectively planned to combine their data as part of the NeOProM (Neonatal Oxygen Prospective Meta-analysis) Collaboration. We graded the quality of evidence as high for the key outcomes of death, major disability, the composite of death or major disability, and necrotising enterocolitis; and as moderate for blindness and retinopathy of prematurity requiring treatment.When an aligned definition of major disability was used, there was no significant difference in the composite primary outcome of death or major disability in extremely preterm infants when targeting a lower (SpO₂ 85% to 89%) versus a higher (SpO₂ 91% to 95%) oxygen saturation range (typical RR 1.04, 95% confidence interval (CI) 0.98 to 1.10; typical RD 0.02, 95% CI -0.01 to 0.05; 5 trials, 4754 infants) (high-quality evidence). Compared with a higher target range, a lower target range significantly increased the incidence of death at 18 to 24 months corrected age (typical RR 1.16, 95% CI 1.03 to 1.31; typical RD 0.03, 95% CI 0.01 to 0.05; 5 trials, 4873 infants) (high-quality evidence) and necrotising enterocolitis (typical RR 1.24, 95% 1.05 to 1.47; typical RD 0.02, 95% CI 0.01 to 0.04; 5 trials, 4929 infants; I² = 0%) (high-quality evidence). Targeting the lower range significantly decreased the incidence of retinopathy of prematurity requiring treatment (typical RR 0.72, 95% CI 0.61 to 0.85; typical RD -0.04, 95% CI -0.06 to -0.02; 5 trials, 4089 infants; I² = 69%) (moderate-quality evidence). There were no significant differences between the two treatment groups for major disability including blindness, severe hearing loss, cerebral palsy, or other important neonatal morbidities.A subgroup analysis of major outcomes by type of oximeter calibration software (original versus revised) found a significant difference in the treatment effect between the two software types for death (interaction P = 0.03), with a significantly larger treatment effect seen for those infants using the revised algorithm (typical RR 1.38, 95% CI 1.13 to 1.68; typical RD 0.06, 95% CI 0.01 to 0.10; 3 trials, 1716 infants). There were no other important differences in treatment effect shown by the subgroup analyses using the currently available data.
AUTHORS' CONCLUSIONS: In extremely preterm infants, targeting lower (85% to 89%) SpO₂ compared to higher (91% to 95%) SpO₂ had no significant effect on the composite outcome of death or major disability or on major disability alone, including blindness, but increased the average risk of mortality by 28 per 1000 infants treated. The trade-offs between the benefits and harms of the different oxygen saturation target ranges may need to be assessed within local settings (e.g. alarm limit settings, staffing, baseline outcome risks) when deciding on oxygen saturation targeting policies.
自20世纪40年代以来,在极早产儿护理中使用补充氧气一直是常见做法。尽管如此,对于将哪个血氧饱和度(SpO₂)范围作为目标以最大化短期或长期生长发育同时最小化危害,几乎没有达成共识。存在两个相互对立的担忧。较低的氧水平(将SpO₂目标设定为90%或更低)可能损害神经发育或导致死亡。较高的氧水平(将SpO₂目标设定大于90%)可能增加早产儿严重视网膜病变或慢性肺病。自20世纪90年代以来,使用脉搏血氧仪无创评估新生儿SpO₂水平已很普遍。直到最近,还没有随机对照试验(RCT)评估在极早产儿出生时或出生后不久将较高或较低血氧饱和度水平作为目标是否更好。因此,国际上存在显著的实践差异,对于早产儿和低出生体重儿血氧饱和度水平的最适宜目标范围仍存在不确定性。
我们使用Cochrane新生儿组的标准检索策略,检索Cochrane对照试验中心注册库(CENTRAL 2016年第4期)、通过PubMed检索MEDLINE(1966年至2016年4月11日)、Embase(1980年至2016年4月11日)和CINAHL(1982年至2016年4月11日)。我们还检索了临床试验数据库、会议论文集以及检索到的随机对照试验文章的参考文献列表。
随机对照试验,纳入孕周小于28周出生的婴儿,在出生时或出生后不久,通过脉搏血氧仪将SpO₂范围设定为90%或以下或90%以上,旨在至少在出生后的前两周维持这些目标。
我们使用Cochrane新生儿组的标准方法从纳入研究的已发表报告中提取数据。我们向原始研究者寻求了一些额外的汇总数据,以便统一两个关键结局的定义。我们使用Review Manager 5软件进行荟萃分析,采用Mantel - Haenszel方法估计典型风险比(RR)和风险差(RD),并采用固定效应模型。我们使用Cochrane“偏倚风险”和GRADE标准评估纳入研究,以确定证据质量。我们通过预先设定的亚组和敏感性分析研究效应的异质性。
五项试验共纳入4965名婴儿,符合纳入标准。这五项试验的研究者前瞻性地计划将他们的数据合并,作为新生儿氧气前瞻性荟萃分析(NeOProM)合作项目的一部分。我们将死亡、严重残疾、死亡或严重残疾的综合结局以及坏死性小肠结肠炎等关键结局的证据质量评为高;将失明和需要治疗的早产儿视网膜病变的证据质量评为中等。当使用统一的严重残疾定义时,对于极早产儿,将较低(SpO₂ 85%至89%)与较高(SpO₂ 91%至95%)血氧饱和度范围作为目标时,死亡或严重残疾的综合主要结局没有显著差异(典型RR 1.04,95%置信区间(CI)0.98至1.10;典型RD 0.02,95% CI -0.01至0.05;5项试验,4754名婴儿)(高质量证据)。与较高目标范围相比,较低目标范围显著增加了校正年龄18至24个月时的死亡发生率(典型RR 1.16,95% CI 1.03至1.31;典型RD 0.03,95% CI 0.01至0.05;5项试验,4873名婴儿)(高质量证据)和坏死性小肠结肠炎(典型RR 1.24,95% 1.05至1.47;典型RD 0.02,95% CI 0.01至0.04;5项试验,4929名婴儿;I² = 0%)(高质量证据)。将较低范围作为目标显著降低了需要治疗的早产儿视网膜病变的发生率(典型RR 0.72,95% CI 0.61至0.85;典型RD -0.04,95% CI -0.06至-0.02;5项试验,4089名婴儿;I² = 69%)(中等质量证据)。两个治疗组在包括失明、严重听力损失、脑瘫或其他重要新生儿疾病的严重残疾方面没有显著差异。按血氧仪校准软件类型(原始版本与修订版本)对主要结局进行的亚组分析发现,两种软件类型在死亡治疗效果上存在显著差异(交互作用P = 0.03),使用修订算法的婴儿治疗效果显著更大(典型RR 1.38,95% CI 1.13至1.68;典型RD 0.06,95% CI 0.01至0.10;3项试验,1716名婴儿)。使用现有数据进行的亚组分析未显示其他重要的治疗效果差异。
在极早产儿中,将较低(85%至89%)SpO₂与较高(91%至95%)SpO₂作为目标相比,对死亡或严重残疾的综合结局或单独的严重残疾(包括失明)没有显著影响,但每1000名接受治疗的婴儿平均死亡风险增加28例。在决定血氧饱和度目标政策时,可能需要在当地环境(如警报限值设置、人员配备、基线结局风险)中评估不同血氧饱和度目标范围的利弊权衡。