Liu Bingqing, Lystrom Levi, Kilina Svetlana, Sun Wenfang
Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States.
Inorg Chem. 2017 May 1;56(9):5361-5370. doi: 10.1021/acs.inorgchem.7b00467. Epub 2017 Apr 11.
Extending π-conjugation of the diimine ligand (N^N ligand) via benzannulation is a common way to tune the absorption and emission energies of cationic iridium(III) complexes. However, it can cause either a red- or blue-shift of the absorption and emission bands depending on the site of benzannulation. To understand the mechanism of changes in optical transitions upon benzannulation on the diimine ligand, a series of new cationic iridium(III) complexes [Ir(dppi)(N^N)]PF (1-6) (where dppi =1,2-diphenylpyreno[4,5-d]imidazole; N^N = 2-(pyridin-2-yl)quinoline (1), 2-(pyridin-2-yl)[7,8]benzoquinoline (2), 2,2'-bisquinoline (3), 2-(quinolin-2-yl)[7,8]benzoquinoline (4), 2-(pyridin-2-yl)[6,7]benzoquinoline (5), 2-(quinolin-2-yl)[6,7]benzoquinoline (6)) containing diimine ligand with varied degrees of π-conjugation via benzannulation at different sites of the 2-(pyridin-2-yl)quinoline ligand were synthesized. Experimental results and density functional theory (DFT) calculations revealed that benzannulation at the 6,7-position of quinoline and/or the 5',6'-position of pyridine (3, 5, and 6) induced red-shifts in their absorption and emission bands with respect to the parent complex 1; while benzannulation at the 7,8-position of quinoline resulted in blue-shifts (2 vs 1 and 4 vs 3). This phenomenon was rationalized by the symmetry of the frontier molecular orbitals at the site of benzannulation, which stabilized or destabilized the lowest unoccupied molecular orbital (LUMO) upon interactions with 1,3-butadiene, while the energy of the highest occupied molecular orbital (HOMO) remained nearly the same. This discovery would enable a rational design of organic or organometallic compounds that have predetermined absorption and emission energies.
通过苯并稠合扩展二亚胺配体(N^N配体)的π共轭是调节阳离子铱(III)配合物吸收和发射能量的常用方法。然而,根据苯并稠合的位置,它可能导致吸收和发射带发生红移或蓝移。为了理解二亚胺配体上苯并稠合时光学跃迁变化的机制,合成了一系列新的阳离子铱(III)配合物[Ir(dppi)(N^N)]PF(1 - 6)(其中dppi = 1,2 - 二苯基芘并[4,5 - d]咪唑;N^N = 2 - (吡啶 - 2 - 基)喹啉(1)、2 - (吡啶 - 2 - 基)[7,8]苯并喹啉(2)、2,2'-联喹啉(3)、2 - (喹啉 - 2 - 基)[7,8]苯并喹啉(4)、2 - (吡啶 - 2 - 基)[6,7]苯并喹啉(5)、2 - (喹啉 - 2 - 基)[6,7]苯并喹啉(6)),这些配合物通过在2 - (吡啶 - 2 - 基)喹啉配体的不同位置进行苯并稠合,含有不同程度π共轭的二亚胺配体。实验结果和密度泛函理论(DFT)计算表明,喹啉的6,7位和/或吡啶的5',6'位(3、5和6)的苯并稠合相对于母体配合物1导致其吸收和发射带发生红移;而喹啉的7,8位的苯并稠合导致蓝移(2与1相比,4与3相比)。这种现象通过苯并稠合位点前沿分子轨道的对称性得到合理解释,该对称性在与1,3 - 丁二烯相互作用时使最低未占据分子轨道(LUMO)稳定或不稳定,而最高占据分子轨道(HOMO)的能量几乎保持不变。这一发现将有助于合理设计具有预定吸收和发射能量的有机或有机金属化合物。