Dev Kumar Govindaraj, Micallef Shirley A
1 Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland.
2 Center for Food Safety and Security Systems, University of Maryland , College Park, Maryland.
Foodborne Pathog Dis. 2017 May;14(5):293-301. doi: 10.1089/fpd.2016.2239. Epub 2017 Feb 22.
Salmonella enterica subsp. enterica can colonize tomato fruit as it interacts with fruit surface compounds. The exometabolome of tomato fruit contains a mixture of compounds, including fatty acids, which could affect Salmonella fitness. Fatty acids detected in fruit exudates were investigated for Salmonella inhibition. Pelargonic, lauric, myristic, palmitic, margaric, stearic, and oleic acids were suspended in water dissolved in dimethyl sulfoxide (DMSO) or emulsified in water and quillaja saponin to assess how bioavailability impacted Salmonella growth. The minimum inhibitory concentrations of fatty acids were determined using a resazurin assay. Quillaja saponin emulsion and DMSO solution of pelargonic acid were inhibitory to Salmonella at 31.25 mM. Lauric and myristic acid emulsions inhibited growth at 1 M concentrations in quillaja emulsions and 62.5 mM in DMSO. Lauric and myristic acids significantly affected growth of Salmonella Newport, Javiana, and Typhimurium (p ≤ 0.05). Growth curve analysis using the Baranyi model revealed reduced maxima populations for all treatments (p ≤ 0.001) and shorter lag phase durations for Salmonella Newport with lauric acid (p < 0.01) and Salmonella Javiana with lauric (p < 0.001) and myristic (p < 0.001) acids. Salmonella Newport and Javiana exhibited an accelerated growth rate with lauric acid (p < 0.001) as a result of early stationary phase transition (shorter log phase). In myristic acid-amended media, Salmonella Javiana also displayed a faster growth rate (p < 0.001). Pelargonic acid (31.25 mM) treatment of Salmonella cells resulted in a drop in culturable cells to below detection in an hour. Microscopic analysis with Cyto-dye and propidium iodide of bacterial cells treated with pelargonic acid indicated a mixture of live and dead cells, with cell lysis of some cells. A subset of cells exhibited elongation-possibly indicating filament formation, a known antibiotic stress response. The results suggest that fatty acids present in tomato fruit surface exudates may exert a restrictive effect on Salmonella growth on fruit.
肠炎沙门氏菌亚种肠炎沙门氏菌在与番茄果实表面化合物相互作用时能够定殖于番茄果实。番茄果实的胞外代谢组包含多种化合物的混合物,其中包括脂肪酸,这些脂肪酸可能会影响沙门氏菌的适应性。对果实渗出物中检测到的脂肪酸进行了沙门氏菌抑制作用研究。将壬酸、月桂酸、肉豆蔻酸、棕榈酸、十七烷酸、硬脂酸和油酸悬浮于溶解在二甲基亚砜(DMSO)中的水中,或在水中与皂树皂苷乳化,以评估生物利用度如何影响沙门氏菌的生长。使用刃天青测定法确定脂肪酸的最低抑菌浓度。皂树皂苷乳液和壬酸的DMSO溶液在31.25 mM时对沙门氏菌具有抑制作用。月桂酸和肉豆蔻酸乳液在皂树乳液中1 M浓度和DMSO中62.5 mM浓度时抑制生长。月桂酸和肉豆蔻酸显著影响新港沙门氏菌、哈维那沙门氏菌和鼠伤寒沙门氏菌的生长(p≤0.05)。使用巴拉尼模型进行的生长曲线分析显示,所有处理的最大种群数量均减少(p≤0.001),月桂酸处理的新港沙门氏菌(p<0.01)、月桂酸处理的哈维那沙门氏菌(p<0.001)和肉豆蔻酸处理的哈维那沙门氏菌(p<0.001)的延迟期持续时间缩短。由于早期稳定期转变(对数期较短),新港沙门氏菌和哈维那沙门氏菌在月桂酸处理下生长速率加快(p<0.001)。在添加肉豆蔻酸的培养基中,哈维那沙门氏菌也显示出更快的生长速率(p<0.001)。用壬酸(31.25 mM)处理沙门氏菌细胞导致可培养细胞在一小时内降至检测限以下。用细胞染料和碘化丙啶对经壬酸处理的细菌细胞进行显微镜分析,结果表明存在活细胞和死细胞的混合物,且一些细胞发生了细胞裂解。一部分细胞表现出伸长,可能表明形成了丝状结构,这是一种已知的抗生素应激反应。结果表明,番茄果实表面渗出物中存在的脂肪酸可能对沙门氏菌在果实上的生长产生限制作用。