Suppr超能文献

采用胶束和固载人工膜液相色谱法对药物经血脑屏障分配的体外和计算指数进行测定。

Determination of in Vitro and in Silico Indexes for the Modeling of Blood-Brain Barrier Partitioning of Drugs via Micellar and Immobilized Artificial Membrane Liquid Chromatography.

机构信息

Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281, S4-bis, B-9000 Gent, Belgium.

Dipartimento di Farmacia, Università degli Studi di Napoli Federico II , Via D. Montesano, 49, I-80131 Naples, Italy.

出版信息

J Med Chem. 2017 May 11;60(9):3739-3754. doi: 10.1021/acs.jmedchem.6b01811. Epub 2017 Apr 27.

Abstract

In the present work, 79 structurally unrelated analytes were taken into account and their chromatographic retention coefficients, measured by immobilized artificial membrane liquid chromatography (IAM-LC) and by micellar liquid chromatography (MLC) employing sodium dodecyl sulfate (SDS) as surfactant, were determined. Such indexes, along with topological and physicochemical parameters calculated in silico, were subsequently used for the development of blood-brain barrier passage-predictive statistical models using partial least-squares (PLS) regression. Highly significant relationships were observed either using IAM (r (n - 1) = 0.78) or MLC (r (n - 1) = 0.83) derived indexes along with in silico descriptors. This hybrid approach proved fast and effective in the development of highly predictive BBB passage oriented models, and therefore, it can be of interest for pharmaceutical industries as a high-throughput BBB penetration oriented screening method. Finally, it shed new light into the molecular mechanism involved in the BBB uptake of therapeutics.

摘要

在本工作中,考虑了 79 种结构上无关的分析物,并通过固定化人工膜液相色谱(IAM-LC)和胶束液相色谱(MLC)测定了它们的色谱保留系数,其中 SDS 作为表面活性剂。这些指数以及通过计算获得的拓扑和物理化学参数随后用于使用偏最小二乘(PLS)回归开发血脑屏障通透性预测统计模型。使用 IAM(r(n-1)= 0.78)或 MLC(r(n-1)= 0.83)衍生的指数以及计算获得的描述符都可以观察到高度显著的相关性。这种混合方法在开发高度预测性的 BBB 通透性模型方面证明是快速有效的,因此,它可能对制药行业作为高通量 BBB 渗透筛选方法具有吸引力。最后,它为涉及治疗剂 BBB 摄取的分子机制提供了新的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验