Tsopelas Fotios, Stergiopoulos Chrysanthos, Danias Panagiotis, Tsantili-Kakoulidou Anna
Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Zografou Athens, Greece.
Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou Athens, Greece.
Mikrochim Acta. 2025 Feb 4;192(3):133. doi: 10.1007/s00604-025-06980-x.
Since Otto Schmitt introduced the term "biomimetics" in 1957, the imitation of biological systems to develop separation methods and simulate biological processes has seen continuous growth, particularly over the past five decades. The biomimetic approach relies on the use of specific ligands-biospecific, biomimetic, or synthetic-which target biomolecules, such as proteins, antibodies, nucleic acids, enzymes, drugs, pesticides, and other bioactive analytes. This review highlights advances in biomimetic separations, focusing on biomimetic liquid chromatography (including immobilized artificial membrane chromatography, cell membrane chromatography, biomimetic affinity chromatography, weak affinity chromatography, micellar liquid chromatography, immobilized liposome chromatography, and liposome electrokinetic capillary chromatography) for the complex separation and purification of biomolecules and other important chemical compounds. It also explores their application in studying drug-receptor interactions, screening chemical permeability, absorption, distribution, toxicity, as well as predicting environmental risks. Additionally, this review discusses the application of biomimetic magnetic nanoparticles, which leverage biological membranes and proteins for drug discovery, protein purification, and diagnostics.
自奥托·施密特于1957年引入“仿生学”一词以来,模仿生物系统以开发分离方法并模拟生物过程的研究一直在持续发展,尤其是在过去的五十年中。仿生方法依赖于使用特定的配体——生物特异性、仿生或合成配体——来靶向生物分子,如蛋白质、抗体、核酸、酶、药物、农药和其他生物活性分析物。本综述重点介绍了仿生分离技术的进展,着重于仿生液相色谱法(包括固定化人工膜色谱法、细胞膜色谱法、仿生亲和色谱法、弱亲和色谱法、胶束液相色谱法、固定化脂质体色谱法和脂质体电动毛细管色谱法)用于生物分子和其他重要化合物的复杂分离与纯化。还探讨了它们在研究药物-受体相互作用、筛选化学渗透性、吸收、分布、毒性以及预测环境风险方面的应用。此外,本综述讨论了仿生磁性纳米颗粒的应用,其利用生物膜和蛋白质进行药物发现、蛋白质纯化和诊断。