Suppr超能文献

eMouveRecherche应用程序与研究设备竞争,以评估自由生活条件下的能量消耗、身体活动和静止时间。

The eMouveRecherche application competes with research devices to evaluate energy expenditure, physical activity and still time in free-living conditions.

作者信息

Guidoux Romain, Duclos Martine, Fleury Gérard, Lacomme Philippe, Lamaudière Nicolas, Saboul Damien, Ren Libo, Rousset Sylvie

机构信息

INRA, Unité de Nutrition Humaine UMR 1019, 63009 Clermont-Ferrand, France.

INRA, Unité de Nutrition Humaine UMR 1019, 63009 Clermont-Ferrand, France; CHU Clermont Ferrand, Serv Med Sport & Explorat Fonct, 63003 Clermont Ferrand, France.

出版信息

J Biomed Inform. 2017 May;69:128-134. doi: 10.1016/j.jbi.2017.04.005. Epub 2017 Apr 9.

Abstract

The proliferation of smartphones is creating new opportunities to monitor and interact with human subjects in free-living conditions since smartphones are familiar to large segments of the population and facilitate data collection, transmission and analysis. From accelerometry data collected by smartphones, the present work aims to estimate time spent in different activity categories and the energy expenditure in free-living conditions. Our research encompasses the definition of an energy-saving function (Pred) considering four physical categories of activities (still, light, moderate and vigorous), their duration and metabolic cost (MET). To create an efficient discrimination function, the method consists of classifying accelerometry-transformed signals into categories and of associating each category with corresponding Metabolic Equivalent Tasks. The performance of the Pred function was compared with two previously published functions (f(η,d)aedes,f(η,d)nrjsi), and with two dedicated sensors (Armband® and Actiheart®) in free-living conditions over a 12-h monitoring period using 30 volunteers. Compared to the two previous functions, Pred was the only one able to provide estimations of time spent in each activity category. In relative value, all the activity categories were evaluated similarly to those given by Armband®. Compared to Actiheart®, the function underestimated still activities by 10.1% and overestimated light- and moderate-intensity activities by 7.9% and 4.2%, respectively. The total energy expenditure error produced by Pred compared to Armband® was lower than those given by the two previous functions (5.7% vs. 14.1% and 17.0%). Pred provides the user with an accurate physical activity feedback which should help self-monitoring in free-living conditions.

摘要

智能手机的普及为在自由生活条件下监测人类受试者并与之互动创造了新机会,因为智能手机为大部分人群所熟悉,便于数据收集、传输和分析。本研究旨在根据智能手机收集的加速度计数据,估算在自由生活条件下不同活动类型所花费的时间以及能量消耗。我们的研究包括定义一个节能函数(Pred),该函数考虑了四种身体活动类型(静止、轻度、中度和剧烈)、它们的持续时间和代谢成本(代谢当量)。为了创建一个有效的判别函数,该方法包括将加速度计转换后的信号分类,并将每个类别与相应的代谢当量任务相关联。在12小时的监测期内,使用30名志愿者在自由生活条件下,将Pred函数的性能与之前发表的两个函数(f(η,d)aedes、f(η,d)nrjsi)以及两个专用传感器(Armband®和Actiheart®)进行了比较。与之前的两个函数相比,Pred是唯一一个能够提供每种活动类型所花费时间估计值的函数。在相对值方面,所有活动类型的评估结果与Armband®给出的结果相似。与Actiheart®相比,该函数低估了静止活动10.1%,高估了轻度和中度强度活动7.9%和4.2%。与Armband®相比,Pred产生的总能量消耗误差低于之前两个函数(5.7%对14.1%和17.0%)。Pred为用户提供了准确的身体活动反馈,这应有助于在自由生活条件下进行自我监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验