MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China.
Ordered Matter Science Research Center, Southeast University , Nanjing 211189, China.
J Am Chem Soc. 2017 May 10;139(18):6369-6375. doi: 10.1021/jacs.7b01334. Epub 2017 May 1.
The underlying phase transitions of ferroelectric mechanisms in molecular crystals are mainly limited to order-disorder and displacive types that are not involved in breaking of the chemical bonds. Here, we show that the bond-switching transition under ambient pressure is designable in molecular crystals, and demonstrate how to utilize the weaker and switchable coordination bonds in a novel molecular perovskite, [(CH)NOH][KFe(CN)] (TMC-1), to afford a scarce multiaxial ferroelectrics with a high Curie temperature of 402 K and 24 equivalent ferroelectric directions (more than BaTiO). The high-quality thin films of TMC-1 can be easily fabricated by a simple solution process, and to reveal perfect ferroelectric properties at both macroscopic and microscopic scales, suggesting TMC-1 as a promising candidate for applications in next-generation flexible electronics. The presented molecular assembly strategy, together with the achieved bond-switching ferroelectric mechanism, opens a new avenue for designing advanced ferroelectric materials.
在分子晶体中,铁电机制的潜在相变主要限于涉及化学键断裂的有序-无序和位移型相变。在这里,我们表明在环境压力下的键转换转变是可设计的,并展示了如何利用新型分子钙钛矿[(CH)NOH][KFe(CN)](TMC-1)中较弱且可切换的配位键,提供一种罕见的多轴铁电体,具有 402 K 的高居里温度和 24 个等效铁电方向(超过 BaTiO)。TMC-1 的高质量薄膜可以通过简单的溶液工艺轻松制备,并在宏观和微观尺度上揭示出完美的铁电性能,表明 TMC-1 是下一代柔性电子应用的有前途的候选材料。所提出的分子组装策略以及实现的键转换铁电机制为设计先进的铁电材料开辟了新途径。