Singh Lokendra P, Issenmann Bruno, Caupin Frédéric
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére and Institut Universitaire de France, F-69622 Villeurbanne, France.
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére and Institut Universitaire de France, F-69622 Villeurbanne, France
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4312-4317. doi: 10.1073/pnas.1619501114. Epub 2017 Apr 12.
The anomalous decrease of the viscosity of water with applied pressure has been known for over a century. It occurs concurrently with major structural changes: The second coordination shell around a molecule collapses onto the first shell. Viscosity is thus a macroscopic witness of the progressive breaking of the tetrahedral hydrogen bond network that makes water so peculiar. At low temperature, water at ambient pressure becomes more tetrahedral and the effect of pressure becomes stronger. However, surprisingly, no data are available for the viscosity of supercooled water under pressure, in which dramatic anomalies are expected based on interpolation between ambient pressure data for supercooled water and high pressure data for stable water. Here we report measurements with a time-of-flight viscometer down to [Formula: see text] and up to [Formula: see text], revealing a reduction of viscosity by pressure by as much as 42%. Inspired by a previous attempt [Tanaka H (2000) 112:799-809], we show that a remarkably simple extension of a two-state model [Holten V, Sengers JV, Anisimov MA (2014) 43:043101], initially developed to reproduce thermodynamic properties, is able to accurately describe dynamic properties (viscosity, self-diffusion coefficient, and rotational correlation time) as well. Our results support the idea that water is a mixture of a high density, "fragile" liquid, and a low density, "strong" liquid, the varying proportion of which explains the anomalies and fragile-to-strong crossover in water.
水的粘度随外加压力异常降低这一现象已为人所知达一个多世纪。它与主要的结构变化同时发生:分子周围的第二配位层塌缩到第一配位层上。因此,粘度是四面体氢键网络逐渐断裂的宏观见证,正是这种网络使得水如此独特。在低温下,常压下的水变得更加四面体化,压力的影响也变得更强。然而,令人惊讶的是,目前尚无关于高压下过冷水粘度的数据,基于过冷水常压数据和稳定水高压数据的插值,预计过冷水中会出现显著异常。在此,我们报告了使用飞行时间粘度计在低至[公式:见正文]和高至[公式:见正文]压力下的测量结果,结果显示压力导致的粘度降低高达42%。受之前一项研究[田中浩(2000年)112:799 - 809]的启发,我们表明,最初为再现热力学性质而开发的双态模型[霍尔滕V、森格斯JV、阿尼西莫夫MA(2014年)43:043101]的一个非常简单的扩展,也能够准确描述动态性质(粘度、自扩散系数和旋转相关时间)。我们结果支持这样一种观点,即水是高密度“易碎”液体和低密度“强”液体的混合物,其比例变化解释了水的异常现象以及从易碎到强的转变。