School of Materials and Energy, Guangdong University of Technology , Guangzhou 510006, China.
ACS Appl Mater Interfaces. 2017 May 10;9(18):15557-15565. doi: 10.1021/acsami.7b03730. Epub 2017 Apr 25.
A covalent bond-induced surface-confined cross-linking is reported to construct one-dimensional coaxial CNT@microporous carbon composite (CNT@micro-C). Octaphenyl polyhedral oligomeric silsesquioxane (Ph-POSS) composed of eight phenyls and a -SiO cage was selected as precursor for microporous carbon. The layer-by-layer cross-linking of phenyl anchored Ph-POSS on the surface of CNT; after carbonization and etching of -SiO cages, CNT@micro-C including CNT core and microporous carbon shell was harvested. The thickness of microporous carbon shell can be well tailored from 6.0 to 20.0 nm, and the surface area of CNT@micro-C can reach 1306 m g. CNT@micro-C combines the structural advantages of CNT and microporous carbon, presenting large surface area, high electrical conductivity, fast ion transfer speed, and short ion transfer distance. When used as electrode material, CNT@micro-C reveals superior supercapacitive performance; for example, its capacitance can reach 243 F g at 0.5 A g and slightly decreases to 209 F g at 10 A g, indicating a capacitance retention of 86%. Even at a very high scan rate of 50 A g, a high capacitance of 177 F g is retained, giving a capacitance retention of 73%.
本文报道了一种通过共价键诱导的表面限域交联来构建一维同轴 CNT@微孔碳复合材料(CNT@micro-C)的方法。选择八苯基笼型倍半硅氧烷(Ph-POSS)作为微孔碳的前体,其由八个苯基和一个-Si-O 笼组成。苯基锚定的 Ph-POSS 通过层层交联固定在 CNT 表面;随后对-Si-O 笼进行碳化和刻蚀,得到包含 CNT 核和微孔碳壳的 CNT@micro-C。微孔碳壳的厚度可以很好地从 6.0 纳米调整到 20.0 纳米,而 CNT@micro-C 的比表面积可达 1306 m2/g。CNT@micro-C 结合了 CNT 和微孔碳的结构优势,具有大的比表面积、高导电性、快速的离子转移速度和短的离子转移距离。将其用作电极材料时,CNT@micro-C 表现出优异的超级电容性能;例如,在 0.5 A/g 的电流密度下,其电容可达 243 F/g,在 10 A/g 时略微下降至 209 F/g,电容保持率为 86%。即使在 50 A/g 的非常高的扫描速率下,仍保持 177 F/g 的高电容,电容保持率为 73%。