Woo Han Min, Lee Hyun Jeong
Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
FEMS Microbiol Lett. 2017 May 1;364(9). doi: 10.1093/femsle/fnx066.
Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to various biochemicals including fatty acid-derived biodiesel. Recently, Synechococcus elongatus PCC 7942, a model cyanobacterium, has been engineered to convert CO2 to fatty acid ethyl esters (FAEEs) as biodiesel. Modular pathway has been constructed for FAEE production. Several metabolic engineering strategies were discussed to improve the production levels of FAEEs, including host engineering by improving CO2 fixation rate and photosynthetic efficiency. In addition, protein engineering of key enzyme in S. elongatus PCC 7942 was implemented to address issues on FAEE secretions toward sustainable FAEE production from CO2. Finally, advanced metabolic engineering will promote developing biosolar cell factories to convert CO2 to feasible amount of FAEEs toward solar biodiesel.
蓝藻的代谢工程作为一种将二氧化碳转化为包括脂肪酸衍生生物柴油在内的各种生物化学品的可持续策略,已受到关注。最近,模式蓝藻聚球藻PCC 7942已被改造,用于将二氧化碳转化为脂肪酸乙酯(FAEEs)作为生物柴油。已构建了用于FAEE生产的模块化途径。讨论了几种代谢工程策略以提高FAEE的生产水平,包括通过提高二氧化碳固定率和光合效率进行宿主工程改造。此外,对聚球藻PCC 7942中的关键酶进行了蛋白质工程改造,以解决从二氧化碳可持续生产FAEE过程中的FAEE分泌问题。最后,先进的代谢工程将促进生物太阳能电池工厂的发展,以将二氧化碳转化为可行量的FAEE,用于生产太阳能生物柴油。