Negishi Takefumi, Nishida Hiroki
Division of Morphogenesis, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-Cho, Toyonaka, Osaka, 560-0043, Japan.
Results Probl Cell Differ. 2017;61:261-284. doi: 10.1007/978-3-319-53150-2_12.
Asymmetric cell division during embryogenesis contributes to cell diversity by generating daughter cells that adopt distinct developmental fates. In this chapter, we summarize current knowledge of three examples of asymmetric cell division occurring in ascidian early embryos: (1) Three successive cell divisions that are asymmetric in terms of cell fate and unequal in cell size in the germline lineage at the embryo posterior pole. A subcellular structure, the centrosome-attracting body (CAB), and maternal PEM mRNAs localized within it control both the positioning of the cell division planes and segregation of the germ cell fates. (2) Asymmetric cell divisions involving endoderm and mesoderm germ layer separation. Asymmetric partitioning of zygotically expressed mRNA for Not, a homeodomain transcription factor, promotes the mesoderm fate and suppresses the endoderm fate. This asymmetric partitioning is mediated by transient nuclear migration toward the mesodermal pole of the mother cell, where the mRNA is delivered. In this case, there is no special regulation of cleavage plane orientation. (3) Asymmetric cell divisions in the marginal region of the vegetal hemisphere. The directed extracellular FGF and ephrin signals polarize the mother cells, inducing distinct fates in a pair of daughter cells (nerve versus notochord and mesenchyme versus muscle). The directions of cell division are regulated and oriented but independently of FGF and ephrin signaling. In these examples, polarization of the mother cells is facilitated by localized maternal factors, by delivery of transcripts from the nucleus to one pole of each cell, and by directed extracellular signals. Two cellular processes-asymmetric fate allocation and orientation of the cell division plane-are coupled by a single factor in the first example, but these processes are regulated independently in the third example. Thus, various modes of asymmetric cell division operate even at the early developmental stages in this single type of organism.
胚胎发育过程中的不对称细胞分裂通过产生具有不同发育命运的子细胞,有助于细胞多样性。在本章中,我们总结了目前关于海鞘早期胚胎中发生的三个不对称细胞分裂例子的知识:(1)胚胎后极生殖系谱系中,三次连续的细胞分裂在细胞命运方面是不对称的,且细胞大小不等。一种亚细胞结构,即中心体吸引体(CAB),以及定位在其中的母体PEM mRNA控制着细胞分裂平面的定位和生殖细胞命运的分离。(2)涉及内胚层和中胚层胚层分离的不对称细胞分裂。同源域转录因子Not的合子表达mRNA的不对称分配促进中胚层命运并抑制内胚层命运。这种不对称分配是由母细胞向中胚层极的短暂核迁移介导的,mRNA在那里被传递。在这种情况下,对分裂平面方向没有特殊调节。(3)植物半球边缘区域的不对称细胞分裂。定向的细胞外FGF和ephrin信号使母细胞极化,在一对子细胞中诱导不同的命运(神经细胞与脊索细胞以及间充质细胞与肌肉细胞)。细胞分裂的方向受到调节和定向,但独立于FGF和ephrin信号传导。在这些例子中,母细胞的极化通过局部母体因子、从细胞核向每个细胞的一极传递转录本以及定向的细胞外信号来促进。在第一个例子中,两个细胞过程——不对称命运分配和细胞分裂平面的定向——由单个因子耦合,但在第三个例子中这些过程是独立调节的。因此,即使在这种单一类型生物体的早期发育阶段,也存在各种不对称细胞分裂模式。