Cotrufo Michele, Fiore Andrea, Verhagen Ewold
Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
Phys Rev Lett. 2017 Mar 31;118(13):133603. doi: 10.1103/PhysRevLett.118.133603. Epub 2017 Mar 30.
We propose a novel type of optomechanical coupling which enables a tripartite interaction between a quantum emitter, an optical mode, and a macroscopic mechanical oscillator. The interaction uses a mechanism we term mode field coupling: a mechanical displacement modifies the spatial distribution of the optical mode field, which, in turn, modulates the emitter-photon coupling rate. In properly designed multimode optomechanical systems, we can achieve situations in which mode field coupling is the only possible interaction pathway for the system. This enables, for example, swapping of a single excitation between emitter and phonon, creation of nonclassical states of motion, and mechanical ground-state cooling in the bad-cavity regime. Importantly, the emitter-phonon coupling rate can be enhanced through an optical drive field, allowing active control of the emitter-phonon coupling for realistic experimental parameters.
我们提出了一种新型的光机械耦合,它能够在量子发射器、光学模式和宏观机械振荡器之间实现三方相互作用。这种相互作用采用了一种我们称为模式场耦合的机制:机械位移会改变光学模式场的空间分布,进而调制发射器 - 光子耦合率。在经过适当设计的多模光机械系统中,我们可以实现模式场耦合是系统唯一可能的相互作用途径的情况。例如,这使得能够在发射器和声子之间交换单个激发、创建非经典运动状态以及在坏腔 regime 中进行机械基态冷却。重要的是,发射器 - 声子耦合率可以通过光驱动场增强,从而能够针对实际实验参数对发射器 - 声子耦合进行主动控制。