Simonds W F
Molecular Pathophysiology Section, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892.
Endocr Rev. 1988 May;9(2):200-12. doi: 10.1210/edrv-9-2-200.
An extensive body of pharmacological data demonstrates the existence of at least three opioid receptor subtypes mediating the diverse effects of opioids. Distinct binding and activity profiles of highly selective ligands, variable sensitivity to naloxone antagonisms, and selective protection and inactivation experiments strongly suggest that mu-, delta-, and kappa-opioid receptors represent recent discrete molecular entities. Purification and affinity labeling of receptor subunits are beginning to provide confirmation of this concept. The delta-opioid receptor affinity labeled and purified to homogeneity from NG108-15 cells comprises a glycoprotein subunit of Mr58,000 with one mol ligand bound/mol protein. Antibodies to this protein recognize native receptor in detergent solution and selectively bind to the Mr58,000 protein on immunoblots of partially purified preparations. Purification of the mu-opioid receptor from bovine striatum reveals a glycoprotein of Mr 65,000 which demonstrates opioid binding activity. Purification and affinity-labeling studies from other laboratories suggest a smaller size of Mr 58,000 for the mu-receptor however. The kappa-opioid receptor from guinea pig brain exhibits a unique mobility on sucrose density gradient centrifugation but has not been characterized in purified form. The primary structure of the opioid receptors, although unknown at present, will most likely reflect structural features of other inhibitory receptors coupled to G-proteins, with seven transmembrane helices and a large third cytoplasmic loop. Biochemical evidence clearly demonstrates the coupling of opioid receptors to Gi, accounting for opioid inhibition of adenylyl cyclase in neuronal cell culture and brain. Opioid inhibition of adenylyl cyclase has been reconstituted in IAP-treated NG108-15 cell membranes with a Gi preparation from brain. Electrophysiological evidence suggests that mu- and delta-opioid receptors can couple to a G-protein which mediates activation of inwardly rectifying potassium channels, perhaps to the same Gk mediating muscarinic potassium channel activation in heart. kappa-Opioid receptors are coupled to inhibition of voltage-dependent calcium channels in several neuronal systems. In NG108-15 cells opioid inhibition of calcium conductance is IAP sensitive and can be reconstituted with G-proteins purified from brain. Differences in the primary structure of mu-, delta-, and kappa-opioid receptors, as well as possible novel opioid receptor subtypes, will be defined by molecular cloning of recombinant DNA.(ABSTRACT TRUNCATED AT 400 WORDS)
大量药理学数据表明,至少存在三种阿片受体亚型介导阿片类药物的多种效应。高选择性配体独特的结合和活性特征、对纳洛酮拮抗作用的不同敏感性以及选择性保护和失活实验有力地表明,μ-、δ-和κ-阿片受体代表了不同的分子实体。受体亚基的纯化和亲和标记开始为这一概念提供证实。从NG108 - 15细胞中亲和标记并纯化至同质的δ-阿片受体包含一个Mr58,000的糖蛋白亚基,每摩尔蛋白结合一摩尔配体。针对该蛋白的抗体可识别去污剂溶液中的天然受体,并在部分纯化制剂的免疫印迹上选择性结合Mr58,000蛋白。从牛纹状体中纯化μ-阿片受体,发现一种Mr 65,000的糖蛋白,其具有阿片结合活性。然而,其他实验室的纯化和亲和标记研究表明μ-受体的分子量较小,为Mr 58,000。豚鼠脑内的κ-阿片受体在蔗糖密度梯度离心中表现出独特的迁移率,但尚未以纯化形式进行表征。阿片受体的一级结构目前尚不清楚,但很可能反映与G蛋白偶联的其他抑制性受体的结构特征,具有七个跨膜螺旋和一个大的第三胞质环。生化证据清楚地表明阿片受体与Gi偶联,这解释了阿片类药物在神经元细胞培养和脑内对腺苷酸环化酶的抑制作用。在经IAP处理的NG108 - 15细胞膜中,用来自脑的Gi制剂重建了阿片类药物对腺苷酸环化酶的抑制作用。电生理证据表明,μ-和δ-阿片受体可与一种G蛋白偶联,该G蛋白介导内向整流钾通道的激活,可能与介导心脏毒蕈碱钾通道激活的同一Gk蛋白有关。κ-阿片受体在几个神经元系统中与电压依赖性钙通道的抑制作用偶联。在NG108 - 15细胞中,阿片类药物对钙电导的抑制作用对IAP敏感,并且可用从脑中纯化的G蛋白重建。μ-、δ-和κ-阿片受体一级结构的差异以及可能的新型阿片受体亚型将通过重组DNA的分子克隆来确定。(摘要截短至400字)