Suppr超能文献

一种基于超高场轨道阱的MS1离子电流定量的IonStar实验策略:在大型队列中实现可重复、深入且准确的蛋白质测量。

An IonStar Experimental Strategy for MS1 Ion Current-Based Quantification Using Ultrahigh-Field Orbitrap: Reproducible, In-Depth, and Accurate Protein Measurement in Large Cohorts.

作者信息

Shen Xiaomeng, Shen Shichen, Li Jun, Hu Qiang, Nie Lei, Tu Chengjian, Wang Xue, Orsburn Benjamin, Wang Jianmin, Qu Jun

机构信息

Department of Pharmaceutical Science, SUNY at Buffalo , Buffalo, New York 14228, United States.

Center of Excellence in Bioinformatics & Life Sciences , Buffalo, New York 14203, United States.

出版信息

J Proteome Res. 2017 Jul 7;16(7):2445-2456. doi: 10.1021/acs.jproteome.7b00061. Epub 2017 May 25.

Abstract

In-depth and reproducible protein measurement in many biological samples is often critical for pharmaceutical/biomedical proteomics but remains challenging. MS1-based quantification using quadrupole/ultrahigh-field Orbitrap (Q/UHF-Orbitrap) holds great promise, but the critically important experimental approaches enabling reliable large-cohort analysis have long been overlooked. Here we described an IonStar experimental strategy achieving excellent quantitative quality of MS1 quantification. Key features include: (i) an optimized, surfactant-aided sample preparation approach provides highly efficient (>75% recovery) and reproducible (<15% CV) peptide recovery across large cell/tissue cohorts; (ii) a long column with modest gradient length (2.5 h) yields the optimal balance of depth/throughput on a Q/UHF-Orbitrap; (iii) a large-ID trap not only enables highly reproducible gradient delivery as for the first time observed via real-time conductivity monitoring, but also increases quantitative loading capacity by >8-fold and quantified >25% more proteins; (iv) an optimized HCD-OT markedly outperforms HCD-IT when analyzing large cohorts with high loading amounts; (v) selective removal of hydrophobic/hydrophilic matrix components using a novel selective trapping/delivery approach enables reproducible, robust LC-MS analysis of >100 biological samples in a single set, eliminating batch effect; (vi) MS1 acquired at higher resolution (fwhm = 120 k) provides enhanced S/N and quantitative accuracy/precision for low-abundance species. We examined this pipeline by analyzing a 5 group, 20 samples biological benchmark sample set, and quantified 6273 unique proteins (≥2 peptides/protein) under stringent cutoffs without fractionation, 6234 (>99.4%) without missing data in any of the 20 samples. The strategy achieved high quantitative accuracy (3-6% media error), low intragroup variation (6-9% media intragroup CV) and low false-positive biomarker discovery rates (3-8%) across the five groups, with quantified protein abundances spanning >6.5 orders of magnitude. Finally, this strategy is straightforward, robust, and broadly applicable in pharmaceutical/biomedical investigations.

摘要

在许多生物样品中进行深入且可重复的蛋白质测量对于药物/生物医学蛋白质组学而言通常至关重要,但仍具有挑战性。使用四极杆/超高场轨道阱(Q/UHF-Orbitrap)进行基于MS1的定量分析前景广阔,但长期以来,那些能够实现可靠的大样本队列分析的至关重要的实验方法一直被忽视。在此,我们描述了一种IonStar实验策略,该策略实现了MS1定量分析出色的定量质量。关键特性包括:(i)一种经过优化的、表面活性剂辅助的样品制备方法,可在大细胞/组织样本队列中实现高效(回收率>75%)且可重复(CV<15%)的肽段回收;(ii)一根长柱搭配适度的梯度长度(2.5小时),在Q/UHF-Orbitrap上实现了深度/通量的最佳平衡;(iii)一个大内径捕集器不仅首次通过实时电导率监测实现了高度可重复的梯度输送,还将定量上样量提高了8倍以上,且定量的蛋白质数量增加了25%以上;(iv)在分析高上样量的大样本队列时,优化后的高能碰撞解离-轨道阱(HCD-OT)明显优于高能碰撞解离-离子阱(HCD-IT);(v)使用一种新型的选择性捕集/输送方法选择性去除疏水/亲水基质成分,能够在单个批次中对>100个生物样品进行可重复、稳健的液相色谱-质谱分析,消除批次效应;(vi)在更高分辨率(半高宽 = 120 k)下采集的MS1为低丰度物种提供了更高的信噪比以及定量准确性/精密度。我们通过分析一个包含5组、20个样品的生物学基准样品集对该流程进行了检验,在严格的截断条件下,无需分级分离即可定量6273种独特蛋白质(≥2个肽段/蛋白质),在20个样品中的任何一个中均无缺失数据的情况下,定量到了6234种(>99.4%)。该策略在五组样本中均实现了较高的定量准确性(中位误差3 - 6%)、较低的组内变异(中位组内CV 6 - 9%)以及较低的假阳性生物标志物发现率(3 - 8%),定量的蛋白质丰度跨度超过6.5个数量级。最后,该策略简单、稳健,广泛适用于药物/生物医学研究。

相似文献

3
IonStar enables high-precision, low-missing-data proteomics quantification in large biological cohorts.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4767-E4776. doi: 10.1073/pnas.1800541115. Epub 2018 May 9.
4
High-quality and robust protein quantification in large clinical/pharmaceutical cohorts with IonStar proteomics investigation.
Nat Protoc. 2023 Mar;18(3):700-731. doi: 10.1038/s41596-022-00780-w. Epub 2022 Dec 9.
6
MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts.
Mass Spectrom Rev. 2019 Nov;38(6):461-482. doi: 10.1002/mas.21595. Epub 2019 Mar 28.
8
Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.
J Proteome Res. 2015 Nov 6;14(11):4662-73. doi: 10.1021/acs.jproteome.5b00536. Epub 2015 Sep 30.

引用本文的文献

3
Fibroblast growth factor receptor 1 inhibition suppresses pancreatic cancer chemoresistance and chemotherapy-driven aggressiveness.
Drug Resist Updat. 2024 Mar;73:101064. doi: 10.1016/j.drup.2024.101064. Epub 2024 Feb 4.
5
Translational control by DRBD18 contributes to the maintenance of the procyclic state.
RNA. 2023 Dec;29(12):1881-1895. doi: 10.1261/rna.079625.123. Epub 2023 Sep 20.

本文引用的文献

1
Promising molecular mechanisms responsible for gemcitabine resistance in cancer.
Genes Dis. 2015 Jul 30;2(4):299-306. doi: 10.1016/j.gendis.2015.07.003. eCollection 2015 Dec.
2
Ion Current-Based Proteomic Profiling for Understanding the Inhibitory Effect of Tumor Necrosis Factor Alpha on Myogenic Differentiation.
J Proteome Res. 2016 Sep 2;15(9):3147-57. doi: 10.1021/acs.jproteome.6b00321. Epub 2016 Aug 17.
3
DeMix-Q: Quantification-Centered Data Processing Workflow.
Mol Cell Proteomics. 2016 Apr;15(4):1467-78. doi: 10.1074/mcp.O115.055475. Epub 2016 Jan 4.
4
Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer.
Nature. 2015 Nov 26;527(7579):525-530. doi: 10.1038/nature16064. Epub 2015 Nov 11.
5
Peptide-Centric Proteome Analysis: An Alternative Strategy for the Analysis of Tandem Mass Spectrometry Data.
Mol Cell Proteomics. 2015 Sep;14(9):2301-7. doi: 10.1074/mcp.O114.047035. Epub 2015 Jul 27.
6
Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.
J Proteome Res. 2015 Oct 2;14(10):4147-57. doi: 10.1021/acs.jproteome.5b00200. Epub 2015 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验