Suppr超能文献

碳纳米管对线粒体呼吸作用影响的实验-计算研究:基于具有马尔可夫-香农熵不变量的新型拉曼光谱变换的计算机模拟纳米定量构效关系机器学习模型

Experimental-Computational Study of Carbon Nanotube Effects on Mitochondrial Respiration: In Silico Nano-QSPR Machine Learning Models Based on New Raman Spectra Transform with Markov-Shannon Entropy Invariants.

作者信息

González-Durruthy Michael, Alberici Luciane C, Curti Carlos, Naal Zeki, Atique-Sawazaki David T, Vázquez-Naya José M, González-Díaz Humberto, Munteanu Cristian R

机构信息

RNASA-IMEDIR, Computer Science Faculty, University of A Coruna , Campus de Elviña s/n, 15071 A Coruña, Spain.

Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country UPV/EHU , 48940, Leioa, Bizkaia, Spain.

出版信息

J Chem Inf Model. 2017 May 22;57(5):1029-1044. doi: 10.1021/acs.jcim.6b00458. Epub 2017 Apr 25.

Abstract

The study of selective toxicity of carbon nanotubes (CNTs) on mitochondria (CNT-mitotoxicity) is of major interest for future biomedical applications. In the current work, the mitochondrial oxygen consumption (E3) is measured under three experimental conditions by exposure to pristine and oxidized CNTs (hydroxylated and carboxylated). Respiratory functional assays showed that the information on the CNT Raman spectroscopy could be useful to predict structural parameters of mitotoxicity induced by CNTs. The in vitro functional assays show that the mitochondrial oxidative phosphorylation by ATP-synthase (or state V3 of respiration) was not perturbed in isolated rat-liver mitochondria. For the first time a star graph (SG) transform of the CNT Raman spectra is proposed in order to obtain the raw information for a nano-QSPR model. Box-Jenkins and perturbation theory operators are used for the SG Shannon entropies. A modified RRegrs methodology is employed to test four regression methods such as multiple linear regression (LM), partial least squares regression (PLS), neural networks regression (NN), and random forest (RF). RF provides the best models to predict the mitochondrial oxygen consumption in the presence of specific CNTs with R of 0.998-0.999 and RMSE of 0.0068-0.0133 (training and test subsets). This work is aimed at demonstrating that the SG transform of Raman spectra is useful to encode CNT information, similarly to the SG transform of the blood proteome spectra in cancer or electroencephalograms in epilepsy and also as a prospective chemoinformatics tool for nanorisk assessment. All data files and R object models are available at https://dx.doi.org/10.6084/m9.figshare.3472349 .

摘要

碳纳米管对线粒体的选择性毒性(碳纳米管 - 线粒体毒性)研究对于未来的生物医学应用具有重大意义。在当前工作中,通过暴露于原始和氧化的碳纳米管(羟基化和羧基化),在三种实验条件下测量线粒体氧消耗(E3)。呼吸功能测定表明,碳纳米管拉曼光谱的信息可用于预测由碳纳米管诱导的线粒体毒性的结构参数。体外功能测定表明,在分离的大鼠肝脏线粒体中,ATP合酶介导的线粒体氧化磷酸化(或呼吸状态V3)未受干扰。首次提出了碳纳米管拉曼光谱的星图(SG)变换,以便为纳米定量构效关系(nano - QSPR)模型获取原始信息。Box - Jenkins和微扰理论算子用于SG香农熵。采用改进的RRegrs方法来测试四种回归方法,即多元线性回归(LM)、偏最小二乘回归(PLS)、神经网络回归(NN)和随机森林(RF)。RF提供了最佳模型来预测在特定碳纳米管存在下的线粒体氧消耗,训练集和测试集的R值为0.998 - 0.999,均方根误差(RMSE)为0.0068 - 0.0133。这项工作旨在证明拉曼光谱的SG变换对于编码碳纳米管信息是有用的,类似于癌症中血液蛋白质组光谱或癫痫中脑电图的SG变换,并且作为一种用于纳米风险评估的前瞻性化学信息学工具。所有数据文件和R对象模型可在https://dx.doi.org/10.6084/m9.figshare.3472349获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验