Bykov Andrei M, Ellison Donald C, Osipov Sergei M
Ioffe Institute, St. Petersburg State Polytechnical University, St. Petersburg 194021, Russia and International Space Science Institute, Bern, Switzerland.
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA.
Phys Rev E. 2017 Mar;95(3-1):033207. doi: 10.1103/PhysRevE.95.033207. Epub 2017 Mar 28.
Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.
宇宙等离子体中的快速无碰撞激波将其动能流转化为下游的热等离子体,其中相当一部分能量进入宽谱的超热带电粒子和磁涨落中。超热粒子能够穿透激波上游区域,产生一个扩展的激波前驱体。冷的上游等离子体流因超热粒子压力梯度提供的力而减速。在高马赫数无碰撞激波中,高效的粒子加速可能与由加速粒子的各向异性分布产生的湍流磁场放大(MFA)相关联。这种各向异性由快速粒子输运决定,使得该问题具有很强的非线性和多尺度特性。在此,我们提出一个无碰撞激波结构的非线性蒙特卡罗模型,其中高能费米加速粒子的超扩散传播与粒子加速和MFA相耦合,从而能够对强激波进行一致的描述。蒙特卡罗技术的一个显著特征是它在所有前驱体位置都包含了粒子分布的完整角向各向异性。该模型表明,高能粒子的超扩散输运(即列维行走传播)在前驱体粒子分布中产生了强烈的四重各向异性。高能粒子产生的压力各向异性引发了一种非共振镜式不稳定性,这种不稳定性会放大波长大于激波产生的最高能质子回旋半径的可压缩波模式。